
Still not done with DP
Hidden Parameters; Trees

CSE 421 22AU

Lecture 15



Midterm Information

Practice Midterm will be posted tonight, along with some other 
resources.
Section Thursday will be “pick what problems you want to practice”

Second-half of Friday’s lecture will be a “what have we seen so far?” review (not new 
problems, but at least a list of what you’ve seen).

Monday, the TAs will spend the lecture slot answering questions on the practice 
midterm (or anything else you want to ask about).

Please fill out the conflict form today so we can work on scheduling.

If you are sick for the exam, we’ll schedule a conflict once you’re well 
(we’ll have a separate mode of telling us, not that form).

https://docs.google.com/forms/d/e/1FAIpQLSfHszl1_7971woIq08vCEydkKrdY9lcfTEIK8QcrGzFItkkwA/viewform?usp=sf_link


Longest Increasing Subsequence

Longest set of (not necessarily consecutive) elements that are increasing

5 is optimal for the array above

(indices 1,2,3,6,7; elements −6,3,6,8,10)

For simplicity – assume all array elements are distinct.

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10



Recurrence

Need recursive answer to the left

Currently processing 𝑖

Recursive calls to the left are needed to know optimum from 1… 𝑖

Will move 𝑖 to the right in our iterative algorithm

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10

Current 𝑖Recursive call is best value in this area Ignored for now.



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing subsequence from 
0,… , 𝑖 where every element of the sequence is at most 𝐴[𝑗]”

Need a recurrence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

If 𝐴 𝑖 > 𝐴[𝑗] element 𝑖 cannot be included in an increasing subsequence where 
every element is at most 𝐴[𝑗]. So taking the largest among the first 𝑖 − 1 suffices. 

If 𝐴 𝑖 ≤ 𝐴[𝑗], then if we include 𝑖, we may include elements to the left only if they 
are less than 𝐴[𝑖] (since 𝐴 𝑖 will now be the last, and therefore largest, of elements 
0… 𝑖. If we don’t include 𝑖 we want the maximum increasing subsequence among 
0… 𝑖 − 1.



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

Memoization structure? 𝑛 × 𝑛 array.

Filling order? 



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5

1, −6

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,0 𝐴 1 < 𝐴[0] not allowed:

Take 𝐿𝐼𝑆(0,0) 𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,1 𝐴 1 ≤ 𝐴[1] can add, 1 + 𝐿𝐼𝑆(0,1) or 𝐿𝐼𝑆(0,1)

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,2 𝐴 1 ≤ 𝐴[2] allowed to add:

1 + 𝐿𝐼𝑆 0,1 or 𝐿𝐼𝑆(0,2) 𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1 1 1 1 1 1

2, 3 2

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 2,0 𝐴 2 ≤ 𝐴 0 allowed to add

1 + 𝐿𝐼𝑆(1,2) or 𝐿𝐼𝑆(1,0) 𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1 1 1 1 1 1

2, 3 2 1 2 2 1 1 2 2

3, 6 2 1 2 3 1 1 3 3

4, −5 2 1 2 3 2 2 3 3

5, 2 3 1 3 3 2 3 3 3

6, 8 3 1 3 3 2 3 4 4

7, 10 3 1 3 3 2 3 4 5

𝑖

𝑗

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



pseudocode

//real code snippet that actually generated the table on the last slide

for(int j=0; j < n; j++){

vals[0][j] = (A[0] <= A[j]) ? 1 : 0;

}

for(int i = 1; i < 8; i++){

for(int j = 0; j < n; j++){

if(A[i] > A[j])

vals[i][j] = vals[i-1][j];

else{

vals[i][j] = Math.max(1+vals[i-1][i], vals[i-1][j]);

}

}

}



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

Memoization structure? 𝑛 × 𝑛 array.

Filling order? 

Outer loop: increasing 𝑖

Inner loop: increasing 𝑗



LIS

One more thing….what’s the final answer?

We want the longest increasing sequence in the whole array.

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing 
subsequence from 0,… , 𝑖 where every element of the sequence is at 
most 𝐴[𝑗]”

What do we want?



LIS

One more thing….what’s the final answer?

We want the longest increasing sequence in the whole array.

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing 
subsequence from 0,… , 𝑖 where every element of the sequence is at 
most 𝐴[𝑗]”

max
𝑗

𝐿𝐼𝑆(𝑛, 𝑗). Intuitively, 𝑗 represents “the last element” in the array. 

Anything could be the last one! Take the maximum.



LIS

Or (perhaps more intuitively)

If we hadn’t switched to “filling the table” we’d have thought about the problem recursively, 
and said “oh, well we should be able to pass “null” (or -1) to indicate “there’s nothing to 
your right; no restrictions.

Add that in! Memo table gets one more column. Recurrence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0, 𝑗 ≠ −1
1 if 𝑖 = 0, 𝑗 = −1

𝕀 𝐴 𝑖 ≤ 𝐴 𝑗 if 𝑖 = 0, 𝑗 ≠ −1

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

Well, I guess the recurrence doesn’t need to change (it fits in the “otherwise” case as is)



DP on Trees



DP on Trees

Trees are recursive structures

A tree is a root node, with zero or more children

Each of which are roots of trees

Since DP is “smart recursion” (recursion where we save values)

Recursive functions/calculations are really common.



DP on Trees

Find the minimum vertex cover in a tree.

Give every vertex a weight, find the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every edge (𝑢, 𝑣): 
𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

The weight of a vertex cover is just the sum of the weights of the 
vertices in the set. 

We want to find the minimum weight vertex cover.



Vertex Cover

Find the minimum vertex cover in 
a tree.

Give every vertex a weight, find 
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20



Vertex Cover

Find the minimum vertex cover in 
a tree.

Give every vertex a weight, find 
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

A valid vertex cover! (just take everything)

Definitely not the minimum though.



Vertex Cover

Find the minimum vertex cover in 
a tree.

Give every vertex a weight, find 
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

A better vertex cover – weight 18



Vertex Cover

Find the minimum vertex cover in 
a tree.

Give every vertex a weight, find 
the minimum weight vertex cover

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20

The minimum vertex cover: weight 17



Vertex Cover

Notice, the minimum weight 
vertex cover might have both 
endpoints of some edges

Even though only one of 1, 8 is 
required on the edge between 
them, they are both required for 
other edges.

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

1

10

35

8

20



Vertex Cover – Recursively 

Let’s try to write a recursive algorithm first.

What information do we need to decide if we include 𝑢?

If we don’t include 𝑢 then to be a valid vertex cover we need…

If we do include 𝑢 then to be a valid vertex cover we need…



Vertex Cover – Recursively 

Let’s try to write a recursive algorithm first.

What information do we need to decide if we include 𝑢?

If we don’t include 𝑢 then to be a valid vertex cover we need…

to include all of 𝑢′𝑠 children, and vertex covers for each subtree

If we do include 𝑢 then to be a valid vertex cover we need…

just vertex covers in each subtree (whether children included or not)



Recurrence

Let 𝑂𝑃𝑇(𝑣) be the weight of a minimum weight vertex cover for the 
subtree rooted at 𝑣.

Write a recurrence for 𝑂𝑃𝑇()

Then figure out how to calculate it



Recurrence

𝑂𝑃𝑇(𝑣) – the weight of the minimum weight vertex cover for the tree 
rooted at 𝑣 (whether or not 𝑣 is included).

𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑣) – the weight of the minimum weight vertex cover for the 
tree rooted at 𝑣 where 𝑣 is included in the vertex cover.

𝑂𝑃𝑇 𝑣 = ቊmin{σ𝑢:𝑢 is a child of 𝑣 𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑢 , 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣 + σ𝑢:𝑢 is a child of 𝑣𝑂𝑃𝑇(𝑢)} if 𝑣 is not a leaf

0 if 𝑣 is a leaf

𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑣 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣 + σ𝑢:𝑢 is a child of 𝑣𝑂𝑃𝑇(𝑢)



Vertex Cover Dynamic Program

What memoization structure should we use?

What code should we write?

What’s the running time?



Vertex Cover Dynamic Program

What memoization structure should we use?

the tree itself!

What code should we write?

What’s the running time?



Vertex Cover

What order do we do the 
calculation? 1

10

35

8

20



Vertex Cover Dynamic Program

What memoization structure should we use?

the tree itself!

What code should we write?

A post-order traversal (make recursive calls, then look up values in 
children to do calculations)

What’s the running time?

Θ(𝑛)



DP Context



DP Design Notes

We haven’t done a single proof for DP…

We won’t ask you to do one.

DP proofs are almost always just “the code does the recurrence” 

But that just moves the correctness question – why is the recurrence 
correct?

And the proof of the recurrence being correct is almost always “I 
included all the cases” 

I’d rather you focus on checking it than trying to explain it.



DP history

So…why is it called “dynamic programming?”

“programming” is an old-timey meaning of the word.

It means “scheduling”

Like a conference has a “program” of who speaks where when.
Or a television executive decides on the nightly programming (what 
show airs when).



DP history

So…dynamic?

The phrase “dynamic programming” was popularized by Richard 
Bellman (we’ll see one of his algorithms on Wednesday)

He was a researcher, funded by the U.S. military….

But the Secretary of Defense [as Bellman tells it] hated research. And 
hated math even more.

So Bellman needed a description of his research that everyone would 
approve of.



DP history

Dynamic

Is actually an accurate adjective – what we think is the best option 
(include/exclude) can change over time.

Even better

“It’s impossible to use the word ‘dynamic’ in a pejorative sense”

“It was something not even a Congressman could object to.”


