
Even More DP CSE 421 Fall 22

Lecture 14



Maximum Contiguous Subarray Sum

We saw an 𝑂(𝑛 log 𝑛) divide and conquer algorithm.

Can we do better with DP?

Given: Array 𝐴[]

Output: 𝑖, 𝑗 such that 𝐴 𝑖 + 𝐴 𝑖 + 1 +⋯+ 𝐴[𝑗] is maximized.



Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm



Maximum Contiguous Subarray Sum

We saw an 𝑂(𝑛 log 𝑛) divide and conquer algorithm.

Can we do better with DP?

Given: Array 𝐴[]

Output: 𝑖, 𝑗 such that 𝐴 𝑖 + 𝐴 𝑖 + 1 +⋯+ 𝐴[𝑗] is maximized.

For today: just output the value𝐴 𝑖 + 𝐴 𝑖 + 1 +⋯+ 𝐴[𝑗]. 

State what you want OPT(i) to be in English, is that enough to do the 
recursion?



Trying to Recurse

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4

𝑂𝑃𝑇 3 would give 𝑖 =2, 𝑗 = 3

𝑂𝑃𝑇(4) would give 𝑖 = 2, 𝑗 = 3 too

𝑂𝑃𝑇(7) would give 𝑖 = 2, 𝑗 = 7 – we need to suddenly backfill with a 

bunch of elements that weren’t optimal…

How do we make a decision on index 7? What information do we 

need?



What do we need for recursion?

If index 𝑖 IS going to be included

We need the best subarray that includes index 𝒊 − 𝟏

If we include anything to the left, we’ll definitely include index 𝑖 − 1
(because of the contiguous requirement)

If index 𝑖 isn’t included

We need the best subarray up to 𝑖 − 1, regardless of whether 𝑖 − 1 is 
included.



Two Values

Need two recursive values:

𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖): sum of the maximum sum subarray among elements from 
0 to 𝑖 that includes index 𝒊 in the sum

𝑂𝑃𝑇(𝑖): sum of the maximum sum subarray among elements 0 to 𝑖 (that 
might or might not include 𝑖)

How can you calculate these values? Try to write recurrence(s), then 
think about memoization and running time.

Pollev.com/robbie



Recurrences

𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑖 = ቊ
max 𝐴 𝑖 , 𝐴 𝑖 + 𝐼𝑁𝐿𝐶𝑈𝐷𝐸 𝑖 − 1 if 𝑖 ≥ 0

0 otherwise

𝑂𝑃𝑇 𝑖 = ቊ
max 𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑖 , 𝑂𝑃𝑇 𝑖 − 1 if 𝑖 ≥ 0
0 otherwise

If we include 𝑖, the subarray must be either just 𝑖 or also include 𝑖 − 1.

Overall, we might or might not include 𝑖. If we don’t include 𝑖, we only have 

access to elements 𝑖 − 1 and before. If we do, we want 𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖) by definition.



Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)



Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5 5
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5 -1
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)



Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5 5 5 7 7 7 7 10
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5 -1 3 7 2 4 6 10
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)



Pseudocode

int maxSubarraySum(int[] A)

int n=A.length

int[] OPT = new int[n]

int[] Inc = new int[n]

inc[0]=A[0]; OPT[0] = max{A[0],0}

for(int i=0;i<n;i++)

inc[i]=max{A[i], A[i]+inc[i-1]}

OPT[i]=max{inc[i], opt[i-1]}

endFor

return OPT[n-1]



Recursive Thinking In General

As before, the hardest part is designing the recurrence. 

It sometimes helps to think from multiple different angles.

Top-down: What’s the first step to take?

Baby Yoda will first go left or down. Use recursion to find out which of 
left or down is better.

The farthest right operation in the string transformation will be one of 
insert, delete, substitute, match for free. Use recursion to find out which 
is best.



Recursive Thinking In General

Bottom-Up: What information could a recursive call give me that would 
help?

How does a path through most of the map help Baby Yoda? 
Well we just need to know the values one left and one down.

The edit distance between which strings would help us compute the 
edit distance between our strings?
Well if we know the distance between 𝑥1…𝑥𝑖−1 and 𝑦1…𝑦𝑗−1 then that would tell 
us what happens if we substitute…that might lead you to insertions and deletions 
too.



Recursive Thinking In General

Some people refer to the “Optimal Substructure Property”

From the optimum (most eggs, fewest number of string operations) for 
a slightly smaller problem (Baby Yoda starting closer to the end, slightly 
smaller strings), we need to be able to build up the optimum for the full 
problem.



Longest Increasing Subsequence

Longest set of (not necessarily consecutive) elements that are increasing

5 is optimal for the array above

(indices 1,2,3,6,7; elements −6,3,6,8,10)

For simplicity – assume all array elements are distinct.

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10



Longest Increasing Subsequence

What do we need to know to decide on element 𝑖?

Is it allowed? 

Will the sequence still be increasing if it’s included?

Still thinking right to left --

Two indices: index we’re looking at, and index of upper bound on 
elements (i.e. the value we need to decide if we’re still increasing).



Recurrence

Need recursive answer to the left

Currently processing 𝑖

Recursive calls to the left are needed to know optimum from 1… 𝑖

Will move 𝑖 to the right in our iterative algorithm

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10

Current 𝑖Recursive call is best value in this area Ignored for now.



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing 
subsequence from 0,… , 𝑖 where every element of the sequence is at 
most 𝐴[𝑗]”

Need a recurrence

𝐿𝐼𝑆 𝑖, 𝑗 =

? if 𝑖 < 0
? if 𝑖 = 0
? if 𝐴 𝑖 > 𝐴 𝑗
? otherwise



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing subsequence from 
0,… , 𝑖 where every element of the sequence is at most 𝐴[𝑗]”

Need a recurrence

𝐿𝐼𝑆 𝑖, 𝑗 =

? if 𝑖 < 0
? if 𝑖 = 0
? if 𝐴 𝑖 > 𝐴 𝑗
? otherwise

If 𝐴 𝑖 > 𝐴[𝑗] element 𝑖 cannot be included in an increasing subsequence where 
every element is at most 𝐴[𝑗]. So taking the largest among the first 𝑖 − 1 suffices. 

If 𝐴 𝑖 ≤ 𝐴[𝑗], then if we include 𝑖, we may include elements to the left only if they 
are less than 𝐴[𝑖] (since 𝐴 𝑖 will now be the last, and therefore largest, of elements 
1… 𝑖. If we don’t include 𝑖 we want the maximum increasing subsequence among 
1… 𝑖 − 1.



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing subsequence from 
0,… , 𝑖 where every element of the sequence is at most 𝐴[𝑗]”

Need a recurrence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

If 𝐴 𝑖 > 𝐴[𝑗] element 𝑖 cannot be included in an increasing subsequence where 
every element is at most 𝐴[𝑗]. So taking the largest among the first 𝑖 − 1 suffices. 

If 𝐴 𝑖 ≤ 𝐴[𝑗], then if we include 𝑖, we may include elements to the left only if they 
are less than 𝐴[𝑖] (since 𝐴 𝑖 will now be the last, and therefore largest, of elements 
0… 𝑖. If we don’t include 𝑖 we want the maximum increasing subsequence among 
0… 𝑖 − 1.



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

Memoization structure? 𝑛 × 𝑛 array.

Filling order? 



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5

1, −6

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,0 𝐴 1 < 𝐴[0] not allowed:

Take 𝐿𝐼𝑆(0,0) 𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,1 𝐴 1 ≤ 𝐴[1] can add, 1 + 𝐿𝐼𝑆(0,1) or 𝐿𝐼𝑆(0,1)

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1

2, 3

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 1,2 𝐴 1 ≤ 𝐴[2] allowed to add:

1 + 𝐿𝐼𝑆 0,1 or 𝐿𝐼𝑆(0,2) 𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1 1 1 1 1 1

2, 3 2

3, 6

4, −5

5, 2

6, 8

7, 10

𝑖

𝑗

𝐿𝐼𝑆 2,0 𝐴 2 ≤ 𝐴 0 allowed to add

1 + 𝐿𝐼𝑆(1,2) or 𝐿𝐼𝑆(1,0) 𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



LIS

0, 5 1, −6 2, 3 3, 6 4, −5 5, 2 6, 8 7, 10

0, 5 1 0 0 1 0 0 1 1

1, −6 1 1 1 1 1 1 1 1

2, 3 2 1 2 2 1 1 2 2

3, 6 2 1 2 3 1 1 3 3

4, −5 2 1 2 3 2 2 3 3

5, 2 3 1 3 3 2 3 3 3

6, 8 3 1 3 3 2 3 4 4

7, 10 3 1 3 3 2 3 4 5

𝑖

𝑗

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise



pseudocode

//real code snippet that actually generated the table on the last slide

for(int j=0; j < n; j++){

vals[0][j] = (A[0] <= A[j]) ? 1 : 0;

}

for(int i = 1; i < 8; i++){

for(int j = 0; j < n; j++){

if(A[i] > A[j])

vals[i][j] = vals[i-1][j];

else{

vals[i][j] = Math.max(1+vals[i-1][i], vals[i-1][j]);

}

}

}



Longest Increasing Subsequence

𝐿𝐼𝑆 𝑖, 𝑗 =

0 if 𝑖 < 0
𝕀[𝐴 𝑖 ≤ 𝐴 𝑗 ] if 𝑖 = 0

𝐿𝐼𝑆 𝑖 − 1, 𝑗 if 𝐴 𝑖 > 𝐴 𝑗

max 1 + 𝐿𝐼𝑆 𝑖 − 1, 𝑖 , 𝐿𝐼𝑆 𝑖 − 1, 𝑗 otherwise

Memoization structure? 𝑛 × 𝑛 array.

Filling order? 

Outer loop: increasing 𝑖

Inner loop: increasing 𝑗



LIS

One more thing….what’s the final answer?

We want the longest increasing sequence in the whole array.

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing 
subsequence from 0,… , 𝑖 where every element of the sequence is at 
most 𝐴[𝑗]”

What do we want?



LIS

One more thing….what’s the final answer?

We want the longest increasing sequence in the whole array.

𝐿𝐼𝑆 𝑖, 𝑗 is “Number of elements of the maximum increasing 
subsequence from 0,… , 𝑖 where every element of the sequence is at 
most 𝐴[𝑗]”

max𝑗 𝐿𝐼𝑆(𝑛, 𝑗). Intuitively, 𝑗 represents “the last element” in the array. 
Anything could be the last one! Take the maximum.


