
Even More
Dynamic Programming

CSE 421 Fall 22

Lecture 13

Edit Distance

More formally:

The edit distance between two strings is:

The minimum number of deletions, insertions, and substitutions to
transform string 𝑥 into string 𝑦.

Deletion: removing one character

Insertion: inserting one character (at any point in the string)

Substitution: replacing one character with one other.

Example

B A B Y Y O D A S

sub sub ins sub del

T A S T Y S O D A

What’s the distance between babyyodas and tastysoda?

Quick Checks – can you explain these?

If 𝑥 has length 𝑛 and 𝑦 has length 𝑚, the edit distance is at most max(𝑥, 𝑦)

The distance from 𝑥 to 𝑦 is the same as from 𝑦 to 𝑥 (i.e. transforming 𝑥 to 𝑦 and

𝑦 to 𝑥 are the same)

Distance: 5, one point for each colored box

Finding a recurrence

What information would let us simplify the problem?

What would let us “take one step” toward the solution?

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇(𝑖, 𝑗) is the minimum number of insertions, deletions, and
substitutions to transform 𝑥1𝑥2⋯𝑥𝑖 into 𝑦1𝑦2⋯𝑦𝑗. (we’re indexing
strings from 1, it’ll make things a little prettier).

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

What does delete look like? 𝑂𝑃𝑇(𝑖 − 1, 𝑗) (delete character from 𝑥
match the rest)

Insert 𝑂𝑃𝑇(𝑖, 𝑗 − 1) Substitution: 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Matching charcters? Also 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1) but only if 𝑥𝑖 = 𝑦𝑗

The recurrence (v1, we’ll improve soon)

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇 𝑖, 𝑗 =

൞

min 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + 𝑂𝑃𝑇 𝑖, 𝑗 − 1 , 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 , 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 +∞ ⋅ 𝕀{𝑥𝑖 ≠ 𝑦𝑗 }

𝑗 if 𝑖 = 0
𝑖 if 𝑗 = 0

Delete Insert Substitution
TODO: Just Match

The recurrence (v1, we’ll improve soon)

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇 𝑖, 𝑗 =

൞

min 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + 𝑂𝑃𝑇 𝑖, 𝑗 − 1 , 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 , 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 +∞ ⋅ 𝕀{𝑥𝑖 ≠ 𝑦𝑗 }

𝑗 if 𝑖 = 0
𝑖 if 𝑗 = 0

Delete Insert Substitution

“Indicator”

like from 312

Just Match

Idea: only allow “just match” when you can just match.

Otherwise make it ∞ (will never be the min).

In code: if/else branch, probably. This is a math notation trick.

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇 𝑖, 𝑗 = ൞

min 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + 𝑂𝑃𝑇 𝑖, 𝑗 − 1 , 𝕀[𝑥𝑖 ≠ 𝑦𝑗] + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1

𝑗 if 𝑖 = 0
𝑖 if 𝑗 = 0

Delete Insert Sub and matching

When we could match, we will never substitute; matching will always give us a better

score! Still have to check delete, insert (those could be better).

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇 𝑖, 𝑗 = ൞

min 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + 𝑂𝑃𝑇 𝑖, 𝑗 − 1 , 𝕀[𝑥𝑖 ≠ 𝑦𝑗] + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1

𝑗 if 𝑖 = 0
𝑖 if 𝑗 = 0

Delete Insert Sub and matching

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0

T 1

A 2

S 3

T 4

Y 5

S 6

O 7

D 8

A 9

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Current subproblem: edit dist

between BABY and TAS

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Delete: get rid of Y (cost 1)

BAB

TAS

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Insert: insert S (cost 1)

BABY

TA

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Sub: Transform Y to S (cost 1)

BAB

TA

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Gold entry will be min of:
1 + delete
1 + insert
1 + sub

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3

S 6

O 7

D 8

A 9

Gold entry will be min of:
1 + delete
1 + insert
1 + sub

1 + 2
1 + 3
1 + 2

Min: 3

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3

S 6

O 7

D 8

A 9

Fill in the next two entries. Be careful with the

sub/match distinction!

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4

S 6

O 7

D 8

A 9

Fill in the next two entries. Be careful with the

sub/match distinction!

Y’s match, so

sub is free!

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

Edit Distance – what operations?

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

Edit Distance – what operations?

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

𝑂𝑃𝑇(𝑖, 𝑗) is the minimum number of insertions, deletions, and

substitutions to transform 𝑥1𝑥2⋯𝑥𝑖 into 𝑦1𝑦2⋯𝑦𝑗 .

✅

𝑚 × 𝑛 Array

Outer loop: increasing 𝑗 (starting from 1)

Inner loop: increasing 𝑖 (starting from 1)

DP Proofs

We generally won’t ask you for proofs of correctness on dynamic
programming problems.

Why?

The proofs are always inductive proofs where you say

“my recurrence checks all the possibilities” or, equivalently

“The maximum thing has to be made up of the best thing for all these
other subproblems.“

The proof itself is very difficult to write clearly (you have to differentiate
between your recurrence and what your recurrence intends to calculate,
which can be

DP Proofs

We’ll include an example proof sometime in the next few week so you
know what you’re (not) missing.

Instead, we’re going to ask for your intuition on what your recurrence is
doing (what do all the cases correspond to/why are they exhaustive)?

The proof is just a lot of formalism on that key idea. So we’re going to
have you focus on the idea, not the formalism.

Goal of DP

Just try all the (reasonable) possibilities.

Don’t worry about greedily choosing the best, use recursion to “look
ahead” for all the best options, and pick the best one.

There is a “greedy-ish” alteration to the Edit Distance recurrence…

It turns out, if the two characters match, that will always be at least as
good as the insert/delete options.

But it’s fine to not notice! And if you thought it was safe but wasn’t,
well….

More Problems

Maximum Contiguous Subarray Sum

We saw an 𝑂(𝑛 log 𝑛) divide and conquer algorithm.

Can we do better with DP?

Given: Array 𝐴[]

Output: 𝑖, 𝑗 such that 𝐴 𝑖 + 𝐴 𝑖 + 1 +⋯+ 𝐴[𝑗] is maximized.

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

Maximum Contiguous Subarray Sum

We saw an 𝑂(𝑛 log 𝑛) divide and conquer algorithm.

Can we do better with DP?

Given: Array 𝐴[]

Output: 𝑖, 𝑗 such that 𝐴 𝑖 + 𝐴 𝑖 + 1 +⋯+ 𝐴[𝑗] is maximized.

For today: just output the value𝐴 𝑖 + 𝐴 𝑖 + 1 +⋯+ 𝐴[𝑗].

Is it enough to know OPT(i)?

Trying to Recurse

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4

𝑂𝑃𝑇 3 would give 𝑖 =2, 𝑗 = 3

𝑂𝑃𝑇(4) would give 𝑖 = 2, 𝑗 = 3 too

𝑂𝑃𝑇(7) would give 𝑖 = 2, 𝑗 = 7 – we need to suddenly backfill with a

bunch of elements that weren’t optimal…

How do we make a decision on index 7? What information do we

need?

What do we need for recursion?

If index 𝑖 IS going to be included

We need the best subarray that includes index 𝒊 − 𝟏

If we include anything to the left, we’ll definitely include index 𝑖 − 1
(because of the contiguous requirement)

If index 𝑖 isn’t included

We need the best subarray up to 𝑖 − 1, regardless of whether 𝑖 − 1 is
included.

Two Values

Need two recursive values:

𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖): sum of the maximum sum subarray among elements from
0 to 𝑖 that includes index 𝒊 in the sum

𝑂𝑃𝑇(𝑖): sum of the maximum sum subarray among elements 0 to 𝑖 (that
might or might not include 𝑖)

How can you calculate these values? Try to write recurrence(s), then
think about memoization and running time.

Pollev.com/robbie

Recurrences

𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑖 = ቊ
max 𝐴 𝑖 , 𝐴 𝑖 + 𝐼𝑁𝐿𝐶𝑈𝐷𝐸 𝑖 − 1 if 𝑖 ≥ 0

0 otherwise

𝑂𝑃𝑇 𝑖 = ቊ
max 𝐼𝑁𝐶𝐿𝑈𝐷𝐸 𝑖 , 𝑂𝑃𝑇 𝑖 − 1 if 𝑖 ≥ 0
0 otherwise

If we include 𝑖, the subarray must be either just 𝑖 or also include 𝑖 − 1.

Overall, we might or might not include 𝑖. If we don’t include 𝑖, we only have

access to elements 𝑖 − 1 and before. If we do, we want 𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖) by definition.

Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)

Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5 5
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5 -1
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)

Example

0 1 2 3 4 5 6 7

5 -6 3 4 -5 2 2 4
𝐴

0 1 2 3 4 5 6 7

5 5 5 7 7 7 7 10
𝑂𝑃𝑇(𝑖)

0 1 2 3 4 5 6 7

5 -1 3 7 2 4 6 10
𝐼𝑁𝐶𝐿𝑈𝐷𝐸(𝑖)

Pseudocode

int maxSubarraySum(int[] A)

int n=A.length

int[] OPT = new int[n]

int[] Inc = new int[n]

inc[0]=A[0]; OPT[0] = max{A[0],0}

for(int i=0;i<n;i++)

inc[i]=max{A[i], A[i]+inc[i-1]}

OPT[i]=max{inc[i], opt[i-1]}

endFor

return OPT[n-1]

Recursive Thinking In General

As before, the hardest part is designing the recurrence.

It sometimes helps to think from multiple different angles.

Top-down: What’s the first step to take?

Baby Yoda will first go left or down. Use recursion to find out which of
left or down is better.

The farthest right operation in the string transformation will be one of
insert, delete, substitute, match for free. Use recursion to find out which
is best.

Recursive Thinking In General

Bottom-Up: What information could a recursive call give me that would
help?

How does a path through most of the map help Baby Yoda?
Well we just need to know the values one left and one down.

The edit distance between which strings would help us compute the
edit distance between our strings?
Well if we know the distance between 𝑥1…𝑥𝑖−1 and 𝑦1…𝑦𝑗−1 then that would tell
us what happens if we substitute…that might lead you to insertions and deletions
too.

Recursive Thinking In General

Some people refer to the “Optimal Substructure Property”

From the optimum (most eggs, fewest number of string operations) for
a slightly smaller problem (Baby Yoda starting closer to the end, slightly
smaller strings), we need to be able to build up the optimum for the full
problem.

Longest Increasing Subsequence

Longest set of (not necessarily consecutive) elements that are increasing

5 is optimal for the array above

(indices 1,2,3,6,7; elements −6,3,6,8,10)

For simplicity – assume all array elements are distinct.

0 1 2 3 4 5 6 7

5 -6 3 6 -5 2 8 10

