
More Dynamic
Programming

CSE 421 Fall 22

Lecture 12

Announcements

The midterm exam is two weeks from today.

Remember it’s in the evening. 90 minutes, 6-7:30 PM.

We’ll be in GWN 301.
210 seats (so about 1.5x the number of students)

Long Tables! (not folding-

Form to let us know if you can’t make the main exam
Request a conflict (work/family responsibilities or something else immovable)

Have a COVID-related reason to not be in a big lecture hall? We’ll see what we can
do.

https://www.washington.edu/classroom/GWN+301
https://docs.google.com/forms/d/e/1FAIpQLSfHszl1_7971woIq08vCEydkKrdY9lcfTEIK8QcrGzFItkkwA/viewform?usp=sf_link

Announcements

We’ll have a reference sheet for you for the midterm (including, e.g., a
list of some algorithms from 332 that you’ve been able to reference)

You’ll also be able to bring your own 8.5x11 inch piece of paper with
handwritten notes.

Practice materials, topics list, contents of the provided reference, etc. all
coming next week.

Baby Yoda Searching

Baby Yoda has to get from the

upper-right corner to the lower left.

His cradle will only let him go left

and down.

He can’t get past the rocks (too high)

– he has to go around them (but still

only going left and down)

As usual…he’s hungry.

He wants to eat as many frog eggs

as possible on the way.

A Recursive Function

FindOPT(int i,int j, bool[][] rocks, bool[][] eggs)

if(i<0 || j < 0) return -∞

if(rocks[i][j]) return −∞

if(i==0 && j==0) return eggs[0][0]

int left = FindOPT(i-1,j,rocks,eggs)

int down = FindOPT(i,j-1,rocks,eggs)

return Max(left,down) + eggs[i][j]

Recurrence Form

𝑂𝑃𝑇 𝑖, 𝑗 =

−∞ if 𝑟𝑜𝑐𝑘𝑠 𝑖, 𝑗 is true
−∞ if 𝑖 < 0 or 𝑗 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

Recurrences can also be used for outputs of a recursive function (not just
their running times!)

This definition is a little more compact than code.

And you could write a recursive function for a recurrence like this.

Speedup

How do we go faster? Don’t recalculate! memoize

Once you know 𝑂𝑃𝑇(𝑖, 𝑗) put it in an array OPT[i][j]

Have some initial value (null?) to mark as uninitialized

If initialized, return that.

Otherwise do the algorithm from the last slide.

How fast? Now Θ(𝑟𝑐).

Why? There are that many spots, each is calculated at most once and looked
up at most twice.

Baby Yoda Searching

1 1 1 2 3 4 4 4

1 1 1 2 3 4 4 4

0 0 1 2 3 3 3 3

−∞ 3 3 3 3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

Where’s the

final answer?

In the top

right. Where

Baby Yoda

starts.
1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞ −∞

Going Bottom-up

So how does that recursion work?

What’s the first entry of the table that we fill?

OPT[0][0]

Why not just start filling in there?

Baby Yoda Searching

(0,0)

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

Baby Yoda Searching

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

Baby Yoda Searching
(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞

Baby Yoda Searching

1 1 1 2 3 4 4 4

1 1 1 2 3 4 4 4

0 0 1 2 3 3 3 3

−∞ 3 3 3 3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

Where’s the

final answer?

In the top

right. Where

Baby Yoda

starts.
1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞ −∞

What order?

Fill in a row at a time (left to right)

Going up to the next row once a level is done.

In actual code, probably easier to handle edges first

Avoid the index-out-of-bound exceptions.

Pseudocode

int eggsSoFar=0;

Boolean rocksInWay=false

for(int x=0; x<c; x++)

if(rocks[x][0]) rocksInWay = true

eggsSoFar+=eggs[x][0]

OPT[x][0]= rocksInWay ? −∞ : eggsSoFar

eggsSoFar=0

rocksInWay=false

for(int y=0; y<r; y++)

eggsSoFar+=eggs[0][y]

OPT[0][y]= rocksInWay ? −∞ : eggsSoFar

for(int y=0;y<r;y++)

for(int x=0;x<c;x++)

if(rocks[x][y])

OPT[x][y]=-∞
else

OPT[x][y]=max(OPT[x-1][y], OPT[x][y-1])+eggs[x][y]

Updating the Problem

A new twist on the problem.

Baby Yoda can use the force to knock over rocks.

But he can only do it once (he tires out)

How do you decide which rocks to knock over?

Could run the algorithm once for every set of rocks knocked over.

𝑘 rocks -- Θ(𝑘𝑟𝑐). Can we do better?

Updating the Problem

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 is the maximum amount of eggs Baby Yoda can collect on a
legal path from (𝑖, 𝑗) to (0,0) using the force 𝑓 times to knock over
rocks.

For simplicity, assume there are no rocks at the starting location (r-1,c-1)

Here was the old rule without the force – how do we update?

𝑂𝑃𝑇 𝑖, 𝑗 =

−∞ if 𝑟𝑜𝑐𝑘𝑠 𝑖, 𝑗 is true
−∞ if 𝑖 < 0 or 𝑗 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

Updating the Problem

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 is the maximum amount of eggs Baby Yoda can collect on a legal path
from (𝑖, 𝑗) to (0,0) using the force 𝑓 times to knock over rocks.

For simplicity, assume there are no rocks at the starting location (r-1,c-1)

Here was the old rule without the force – how do we update?

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 =

−∞ if 𝑖 < 0 or 𝑗 < 0 or 𝑓 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0 and 𝑓 ≥ 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗, 𝑓 − 𝑟𝑜𝑐𝑘𝑠(𝑖 − 1, 𝑗) , 𝑂𝑃𝑇 𝑖, 𝑗 − 1, 𝑓 − 𝑟𝑜𝑐𝑘𝑠(𝑖, 𝑗 − 1) + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

Casting Boolean as an integer

(subtract 1 if you would need to

knock over rocks)

Updating the Problem

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 is the maximum amount of eggs Baby Yoda can collect on a legal path
from (𝑖, 𝑗) to (0,0) using the force 𝑓 times to knock over rocks.

For simplicity, assume there are no rocks at the starting location (r-1,c-1)

Here was the old rule without the force – how do we update?

𝑂𝑃𝑇 𝑖, 𝑗, 𝑓 =

−∞ if 𝑖 < 0 or 𝑗 < 0 or 𝑓 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0 and 𝑓 ≥ 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗, 𝑓 − 𝑟𝑜𝑐𝑘𝑠(𝑖 − 1, 𝑗) , 𝑂𝑃𝑇 𝑖, 𝑗 − 1, 𝑓 − 𝑟𝑜𝑐𝑘𝑠(𝑖, 𝑗 − 1) + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

rocks(i,j) doesn’t guarantee −∞ anymore. Only if you were out of force uses before trying to jump

onto that location.

Baby Yoda Searching
(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

What can we

fill in?

𝑎/𝑏
𝑎 is for (x,y,0)

𝑏 is for (x,y,1)

Baby Yoda Searching
(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/?

What can we

fill in?

1/? 2/? 2/? 2/? 2/? 2/? 2/?

𝑎/𝑏
𝑎 is for (x,y,0)

𝑏 is for (x,y,1)

Baby Yoda Searching

1/? 1/? 1/? 1/? 3/? 4/? 4/? 4/?

1/? 1/? 1/? 1/? 3/? 4/? 4/? 4/?

0/? 0/? 1/? 1/? 3/? 3/? 3/? 3/?

2/? 3/? 3/? 3/? 3/?

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/?

What can we

fill in?

Everything

with 𝑓 = 0 in

the same

order as

before.

1/? 2/? 2/? 2/? 2/? 2/? 2/?

0/? 1/? 2/? 2/? 2/? 2/? 2/? 2/?

0/? 1/? −∞/?

Entries are slightly

different – we’re

handling rocks

differently.

Baby Yoda Searching

1/? 1/? 1/? 1/? 3/? 4/? 4/? 4/?

1/? 1/? 1/? 1/? 3/? 4/? 4/? 4/?

0/? 0/? 1/? 1/? 3/? 3/? 3/? 3/?

2/? 3/? 3/? 3/? 3/?

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/?

What can we

fill in?

Again from

left to right,

bottom to

top, now

filling in
1/? 2/? 2/? 2/? 2/? 2/? 2/?

0/? 1/? 2/? 2/? 2/? 2/? 2/? 2/?

0/? 1/? −∞/?

Baby Yoda Searching

1/1 1/1 1/4 1/4 3/4 4/5 4/5 4/5

1/1 1/1 1/4 1/4 3/4 4/5 4/5 4/5

0/0 0/0 1/4 1/4 3/4 3/4 3/4 3/4

2/3 3/3 3/3 3/3 3/3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/0

What can we

fill in?

Again from

left to right,

bottom to

top, now

filling in
1/1 2/2 2/2 2/2 2/2 2/2 2/2

0/0 1/1 2/2 2/2 2/2 2/2 2/2 2/2

0/0 1/1 −∞/3

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

Bells,Whistles, and optimiziation

Baby Yoda Searching

1/1 1/1 1/4 1/4 3/4 4/5 4/5 4/5

1/1 1/1 1/4 1/4 3/4 4/5 4/5 4/5

0/0 0/0 1/4 1/4 3/4 3/4 3/4 3/4

2/3 3/3 3/3 3/3 3/3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0/0

So should

Baby Yoda

go left or

down?

1/1 2/2 2/2 2/2 2/2 2/2 2/2

0/0 1/1 2/2 2/2 2/2 2/2 2/2 2/2

0/0 1/1 −∞/3

Which Way to Go

When you’re taking the max in the recursive case, you can also record
which option gave you the max.

That’s the way to go.

We’ll ask you to do that once…but for the most part we’ll just have you
find the number.

Optimizing

Do we need all that memory?

Let’s go back to the simple version (no using the Force)

Recurrence Form

𝑂𝑃𝑇 𝑖, 𝑗 =

−∞ if 𝑟𝑜𝑐𝑘𝑠 𝑖, 𝑗 is true
−∞ if 𝑖 < 0 or 𝑗 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

What values do we need to keep around?

Baby Yoda Searching

1 1 1 2 3 4 4 4

1 1 1 2 3 4 4 4

0 0 1 2 3 3 3 3

−∞ 3 3 3 3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

Need one

spot left and

one down.

Keep one full

row, and a

partially full

row around.

Θ(𝑐) memory.

1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞ −∞

More Practical Problems

Edit Distance

Given two strings 𝑥 and 𝑦, we’d like to tell how close they are.

Applications?

Spelling suggestions

DNA comparison

Edit Distance

More formally:

The edit distance between two strings is:

The minimum number of deletions, insertions, and substitutions to
transform string 𝑥 into string 𝑦.

Deletion: removing one character

Insertion: inserting one character (at any point in the string)

Substitution: replacing one character with one other.

Example

B A B Y Y O D A S

sub sub ins sub del

T A S T Y S O D A

What’s the distance between babyyodas and tastysoda?

Quick Checks – can you explain these?

If 𝑥 has length 𝑛 and 𝑦 has length 𝑚, the edit distance is at most max(𝑥, 𝑦)

The distance from 𝑥 to 𝑦 is the same as from 𝑦 to 𝑥 (i.e. transforming 𝑥 to 𝑦 and

𝑦 to 𝑥 are the same)

Distance: 5, one point for each colored box

Finding a recurrence

What information would let us simplify the problem?

What would let us “take one step” toward the solution?

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇(𝑖, 𝑗) is the edit distance of the strings 𝑥1𝑥2⋯𝑥𝑖 and 𝑦1𝑦2⋯𝑦𝑗.
(we’re indexing strings from 1, it’ll make things a little prettier).

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

Write a recurrence.

What do we need to keep track of? Where we are in each string!

Match right to left – be sure to keep track of characters remaining in
each string!

Poll at Pollev.com/robbie

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

What does delete look like? 𝑂𝑃𝑇(𝑖 − 1, 𝑗) (delete character from 𝑥
match the rest)

Insert 𝑂𝑃𝑇(𝑖, 𝑗 − 1) Substitution: 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Matching characters? Also 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1) but only if 𝑥𝑖 = 𝑦𝑗

The recurrence

“Handling” one character of 𝑥 or 𝑦

i.e. choosing one of insert, delete, or substitution and increasing the
“distance” by 1

OR realizing the characters are the same and matching for free.

𝑂𝑃𝑇 𝑖, 𝑗 = ൞

min 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + 𝑂𝑃𝑇 𝑖, 𝑗 − 1 , 𝕀[𝑥𝑖 ≠ 𝑦𝑗] + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1

𝑗 if 𝑖 = 0
𝑖 if 𝑗 = 0

Delete Insert Sub and matching

“Indicator” –

math for “cast

bool to int”

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

Minimum Edit Distance between 𝑥 and 𝑦

✅

Memoization

𝑂𝑃𝑇 𝑖, 𝑗 = ൞

min 1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + 𝑂𝑃𝑇 𝑖, 𝑗 − 1 , 𝕀[𝑥𝑖 ≠ 𝑦𝑗] + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1

𝑗 if 𝑖 = 0
𝑖 if 𝑗 = 0

2D array 𝑛 by 𝑚

OPT[i][j] is 𝑂𝑃𝑇(𝑖, 𝑗)

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0

T 1

A 2

S 3

T 4

Y 5

S 6

O 7

D 8

A 9

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Current subproblem: edit dist

between BABY and TAS

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Delete: get rid of Y (cost 1)

BAB

TAS

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Insert: insert S (cost 1)

BABY

TA

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Sub: Transform Y to S (cost 1)

BAB

TA

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1

A 2 2

S 3 3

T 4 4

Y 5 5

S 6 6

O 7 7

D 8 8

A 9 9

B A B Y

T A S

Gold entry will be min of:
1 + delete
1 + insert
1 + sub

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3

S 6

O 7

D 8

A 9

Gold entry will be min of:
1 + delete
1 + insert
1 + sub

1 + 2
1 + 3
1 + 2

Min: 3

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3

S 6

O 7

D 8

A 9

Fill in the next two entries. Be careful with the

sub/match distinction!

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4

S 6

O 7

D 8

A 9

Fill in the next two entries. Be careful with the

sub/match distinction!

Y’s match, so

sub is free!

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

Can recover the choices, just like with Baby Yoda.

Edit Distance

𝐎𝐏𝐓(𝒊, 𝒋)0 B, 1 A, 2 B, 3 Y, 4 Y, 5 O, 6 D, 7 A, 8 S, 9

0 0 1 2 3 4 5 6 7 8 9

T 1 1 1 2 3 4 5 6 7 8 9

A 2 2 2 1 2 3 4 5 6 7 8

S 3 3 3 2 2 3 4 5 6 7 7

T 4 4 4 3 3 3 4 5 6 7 8

Y 5 5 5 4 4 3 3 4 5 6 7

S 6 6 6 5 5 4 4 4 5 6 6

O 7 7 7 6 6 5 5 4 5 6 7

D 8 8 8 7 7 6 6 5 4 5 6

A 9 9 9 8 8 7 7 6 6 4 5

When there are ties, there may be more than

one set of choices.

Dynamic Programming Process

1. Define the object you’re looking for

2. Write a recurrence to say how to find it

3. Design a memoization structure

4. Write an iterative algorithm

Minimum Edit Distance between 𝑥 and 𝑦

✅

𝑚 × 𝑛 Array

Outer loop: increasing rows (starting from 1)

Inner loop: increasing column (starting from 1)

