
Dynamic Programming CSE 421 22AU

Lecture 11

Divide And Conquer Summary

Takeaways from D&C:

Recursive thinking can let us solve problems faster!

When solving a recursive problem, state precisely what the recursive call
is giving back to you.

Use the values of the recursive call (or at least the fact you’ve made
recursive calls) when designing the combine step
If your “combine” step isn’t faster than baseline, your whole algorithm isn’t better
than the baseline!

How Were We Solving All Those Recurrences?

The techniques from CSE 332 (unrolling and/or recursion trees) still
work!

But now that you’ve done them a bunch in 332, we’ll give you a
shortcut…

Master Theorem

𝑇 𝑛 = ቐ
𝑑 if 𝑛 is at most some constant

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 otherwise

Given a recurrence of the following form, where 𝑎, 𝑏, 𝑐, and 𝑑 are constants:

Where 𝑓 𝑛 is Θ 𝑛𝑐 log𝑘 𝑛 for 𝑘 ≥ 0, 𝑎 ∈ ℤ+, 𝑐 ≥ 1

𝑇 𝑛 ∈ Θ 𝑛𝑐 ⋅ log𝑘 𝑛log𝑏 𝑎 < 𝑐

log𝑏 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛𝑐 log𝑘+1 𝑛

log𝑏 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛log𝑏 𝑎

If

If

If

then

then

then

Theorem still holds even if there are

ceilings/floors in the 𝑇
𝑛

𝑏
term.

Proof?

The easiest way to understand is actually to make a bunch of recursion
trees!

𝑎 is the “branching factor” you end up with 𝑎𝑖 nodes at level 𝑖.

𝑏 is the amount you cut down the problem size by.

So at level 𝑖 you do: 𝑎𝑖 ⋅ 𝑓
𝑛

𝑏𝑖
work.

For example, when 𝑐 = log𝑏 𝑎 , that simplifies to
𝑎𝑖𝑛𝑐

𝑏log𝑏(𝑎)⋅𝑖
=

𝑎𝑖𝑛𝑐

𝑎𝑖
= 𝑛𝑐

And there will be log𝑏 𝑛 levels, so the work is: 𝑛𝑐 log 𝑛.

Proof?

When log𝑏 𝑎 < 𝑐

The total work decreases at each level, so the first level dominates,
where you do 𝑂(𝑛𝑐) work.

When log𝑏 𝑎 > 𝑐

The total work increases at each level, so the last level (which is at
log𝑏 𝑎) dominates, where you have 𝑂(𝑎log𝑏 𝑛) nodes, each doing 𝑂(1)
work. Some log tricks will rearrange to the more familiar 𝑂(𝑛log𝑏 𝑎).

A stronger version

From Wikipedia

Also what to do when format doesn’t quite

fit (e.g. 𝑘 negative).

The version on the last slide should suffice.

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Dynamic Programming

Dynamic Programming

The most robust algorithm design paradigm we’ll study this quarter.

Small changes in the problem usually lead to small changes in the
algorithm.

Classic DP

This problem is going to look silly (and it is)

But it is going to make it much easier to do the hard DP problems next
week.

Baby Yoda Searching

Baby Yoda has to get from the

upper-right corner to the lower left.

His cradle will only let him go left

and down.

He can’t get past the rocks (too high)

– he has to go around them (but still

only going left and down)

As usual…he’s hungry.

He wants to eat as many frog eggs

as possible on the way.

Baby Yoda Searching

Black path: get

stuck. Invalid.

Red path: valid!

And optimal (no

path collects

more than 4
eggs.)

Baby Yoda Searching

Can we greedily head to the next accessible egg?

Might get us

stuck between

rocks.

Or pass up a

series of eggs

we can’t see.

Baby Yoda Searching

Can we divide and conquer?

Best left-side

path might

start at a place

inaccessible to

end of best

right-side path.

Could make a

subproblem for

each start and

ending spot?

Baby Yoda Searching

Baby Yoda Searching

So what should we do?

Let’s try to use recursion.

What should our recursive calls be

finding?

What recursive calls do we need?

Define the problem

Let OPT(i,j) be the maximum number of eggs we can get on a legal
path from (i,j) to (0,0)(including the egg in (i,j) if there is one)

What recursive calls do we need?

Don’t try to divide & conquer, think closer to home…

We have to decide whether to go down or left…

“How could we take one step toward the solution?”

Baby Yoda Searching

(0,0)

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

Recursive Baby Yoda

Let OPT(i,j) be the maximum number of eggs we can get on a legal
path from (i,j) to (0,0)(including the egg in (i,j) if there is one)

Base Case?

Recursive case?

At (0,0), nowhere to go, return eggs[0][0]

Find best path to left OPT(i-1, j), and down OPT(i,j-1)

Take max of those, add in eggs[i][j]

Need some error handling (can’t go off the edge)
And if we’re on rocks, we can’t get to the end (return -∞)

A Recursive Function

FindOPT(int i,int j, bool[][] rocks, bool[][] eggs)

if(i<0 || j < 0) return -∞

if(rocks[i][j]) return −∞

if(i==0 && j==0) return eggs[0][0]

int left = FindOPT(i-1,j,rocks,eggs)

int down = FindOPT(i,j-1,rocks,eggs)

return Max(left,down) + eggs[i][j]

Recurrence Form

𝑂𝑃𝑇 𝑖, 𝑗 =

−∞ if 𝑟𝑜𝑐𝑘𝑠 𝑖, 𝑗 is true
−∞ if 𝑖 < 0 or 𝑗 < 0

𝑒𝑔𝑔𝑠 0,0 if 𝑖 = 0 and 𝑗 = 0

max 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝑒𝑔𝑔𝑠 𝑖, 𝑗 otherwise

Recurrences can also be used for outputs of a recursive function (not just
their running times!)

This definition is a little more compact than code.

And you could write a recursive function for a recurrence like this.

Analyzing the recursive function

So…how does the code work? What’s its running time?

𝑇 𝑐, 𝑟 = ቊ
𝑇 𝑐 − 1, 𝑟 + 𝑇 𝑐, 𝑟 − 1 + Θ 𝑛 if 𝑟 ≥ 0 and 𝑐 ≥ 0
Θ 1 otherwise

Master Theorem says…

Analyzing the recursive function

So…how does the code work? What’s its running time?

𝑇 𝑐, 𝑟 = ቊ
𝑇 𝑐 − 1, 𝑟 + 𝑇 𝑐, 𝑟 − 1 + Θ 𝑛 if 𝑟 ≥ 0 and 𝑐 ≥ 0
Θ 1 otherwise

Master Theorem doesn’t help.

Not even the fancy version on Wikipedia. It’s only for “divide and
conquer style” recurrences (dividing the problem)

Tree Method, Maybe…

OPT

(r,c)

OPT

(r-1,c)

OPT

(r-2,c)

OPT

(r-1,c-1)

OPT

(r,c-1)

OPT

(r-1,c-1)

OPT

(r,c-2)

… … … …

When do we hit the base case?

Sometime between min(𝑟, 𝑐) and 𝑟 + 𝑐 levels.

Tree Method

Nodes at level 𝑖 2𝑖

Work/node Θ(1)

Work at level 𝑖 Θ 2𝑖

Base Case level At least min(𝑟, 𝑐) At most 𝑟 + 𝑐

Work at base case Ω 2min 𝑟,𝑐 𝑂 2𝑟+𝑐

Total work Ω 2min 𝑟,𝑐 𝑂(2𝑟+𝑐)

Overall work is sum

over all levels – each

level has twice the

work as the last, so the

last level is about half

the total work.

Tight big-O depends on relationship between 𝑟 and 𝑐…but regardless – it’s slow.

Speedup

That’s way too slow…but it doesn’t have to be.

OPT

(r,c)

OPT

(r-1,c)

OPT

(r-2,c)

OPT

(r-1,c-1)

OPT

(r,c-1)

OPT

(r-1,c-1)

OPT

(r,c-2)

… … … …

Activity

FindOPT(int i,int j, bool[][] rocks, bool[][] eggs)

if(i<0 || j < 0) return -∞

if(rocks[i][j]) return −∞

if(i==0 && j==0) return eggs[0][0]

int left = FindOPT(i-1,j,rocks,eggs)

int down = FindOPT(i,j-1,rocks,eggs)

return Max(left,down) + eggs[i][j]

Figure out how to take advantage of the repeated calculation.

What do you think the running time will be of your new algorithm?

Fill out the question at

pollev.com/robbie

Speedup

How do we go faster? Don’t recalculate! memoize

Once you know 𝑂𝑃𝑇(𝑖, 𝑗) put it in an array OPT[i][j]

Have some initial value (null?) to mark as uninitialized

If initialized, return that.

Otherwise do the algorithm from the last slide.

How fast? Now Θ(𝑟𝑐). A little harder to analyze – ask Robbie after

Not a typo! We’re leaving

ourselves a memo.

Baby Yoda Searching

(0,0)

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

Going Bottom-up

So how does that recursion work?

What’s the first entry of the table that we fill?

OPT[0][0]

Why not just start filling in there?

Baby Yoda Searching

(0,0)

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

Baby Yoda Searching

(0,1)

(0,2)

(1,1)

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

Baby Yoda Searching
(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

What else

can we fill in?

1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞

Baby Yoda Searching

1 1 1 2 3 4 4 4

1 1 1 2 3 4 4 4

0 0 1 2 3 3 3 3

−∞ 3 3 3 3

(c-1,r-1)

X-coordinate

0 c-1

0

r-1

Y
-c

o
o
rd

in
a

te

0

Where’s the

final answer?

In the top

right. Where

Baby Yoda

starts.
1 2 2 2 2 2 2

0 1 −∞ 2 2 2 2 2

0 −∞ −∞

What order?

Fill in a row at a time (left to right)

Going up to the next row once a level is done.

In actual code, probably easier to handle edges first

Avoid the index-out-of-bound exceptions.

Pseudocode

int eggsSoFar=0;

Boolean rocksInWay=false

for(int x=0; x<c; x++)

if(rocks[x][0]) rocksInWay = true

eggsSoFar+=eggs[x][0]

OPT[x][0]= rocksInWay ? −∞ : eggsSoFar

eggsSoFar=0

rocksInWay=false

for(int y=0; y<r; y++)

if(rocks[0][y]) rocksInWay = true

eggsSoFar+=eggs[0][y]

OPT[0][y]= rocksInWay ? −∞ : eggsSoFar

for(int y=0;y<r;y++)

for(int x=0;x<c;x++)

if(rocks[x][y])

OPT[x][y]=-∞
else

OPT[x][y]=max(OPT[x-1][y], OPT[x][y-1])+eggs[x][y]

