
10/21/2022

1

Divide And Conquer Summary
Takeaways from D&C:
Recursive thinking can let us solve problems faster!
When solving a recursive problem, state precisely what the recursive call
is giving back to you.

Use the values of the recursive call (or at least the fact you’ve made
recursive calls) when designing the combine step
If your “combine” step isn’t faster than baseline, your whole algorithm isn’t better
than the baseline!

Master Theorem

𝑇 𝑛 = ቐ
𝑑 if 𝑛 is at most some constant

𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 otherwise

Given a recurrence of the following form, where 𝑎, 𝑏, 𝑐, and 𝑑 are constants:

Where 𝑓 𝑛 is Θ 𝑛௖ log௞ 𝑛 for 𝑘 ≥ 0, 𝑎 ∈ ℤା, 𝑐 > 1

𝑇 𝑛 ∈ Θ 𝑛௖ ⋅ log௞ 𝑛log௕ 𝑎 < 𝑐

log௕ 𝑎 = 𝑐 𝑇 𝑛 ∈ Θ 𝑛௖ log௞ାଵ 𝑛

log௕ 𝑎 > 𝑐 𝑇 𝑛 ∈ Θ 𝑛୪୭୥್ ௔

If

If

If

then

then

then

Theorem still holds even if there are
ceilings/floors in the 𝑇 ௡

௕
term.

10/21/2022

2

Tree Method, Maybe…
OPT

(r,c)

OPT
(r-1,c)

OPT
(r-2,c)

OPT
(r-1,c-1)

OPT
(r,c-1)

OPT
(r-1,c-1)

OPT
(r,c-2)

… … … …

When do we hit the base case?
Sometime between min (𝑟, 𝑐) and 𝑟 + 𝑐 levels.

Activity

FindOPT(int i,int j, bool[][] rocks, bool[][] eggs)

if(i<0 || j < 0) return -∞

if(rocks[i][j]) return −∞

if(i==0 && j==0) return eggs[0][0]

int left = FindOPT(i-1,j,rocks,eggs)

int down = FindOPT(i,j-1,rocks,eggs)

return Max(left,down) + eggs[i][j]

Figure out how to take advantage of the repeated calculation.
What do you think the running time will be of your new algorithm?

Fill out the question at
pollev.com/robbie

