
More Divide & Conquer CSE 421 Fall 2022

Lecture 10



Today

Another classic Divide & Conquer Algorithm



Linear Time Median

Today’s algorithm is not practical. You will never use it in practice.

But it is beautiful. 

It shows the extent of what one can do with D&C

And it is interesting for theoretical reasons.

Caveats for pseudocode/proofs today

We’re assuming all elements are distinct (makes code a bit cleaner)

There are about a million spots where you need to worry about ceilings/floors, off-
by-ones, what to do if the number of elements isn’t exactly a multiple of something, 
etc. 

You can work them all out on your own. I’m skipping them for this lecture…you’ll 
never actually implement this code anyway…



Goal: Median Finding

Input: An unsorted array

Output: the median element of the array.

Baseline: 

What’s the first algorithm you think of? What’s the running time?



Goal: Median Finding

Input: An unsorted array

Output: the median element of the array.

Baseline: 

What’s the first algorithm you think of? What’s the running time?

Sort the array, return element 𝑛/2; 𝑂(𝑛 log 𝑛) running time.



Find the Median

Remember the idea behind quicksort.

Pick an element that you hope is near the median (“the pivot”).

Put everything smaller in one array, everything bigger in the other.
In the sorted array, the pivot goes between the “smaller” array and the “bigger” 
array.

Make recursive calls on each array and stick the arrays together.

We can adapt the idea to just find the median:



Find The Median

MedianFind(A[0..n-1])

Let A[p] be the pivot //TODO need to select p.

Let S and B be two arrays //”small” and “big” elements

for(i from 0 to n-1 except p)

if(A[i] <= A[p])

Copy A[i] into S

else 

Copy A[i] into B

if(S.length == n/2) return A[p] //A[p] is median

else if (S.length > n/2)

…//TODO what goes here?

else

…//TODO what goes here?



Examples

6 3 1 8 10 2 5 11 9 7 4

𝑛 = 11, median is 6

Pivot 𝐴 0 = 6

Pivot 𝐴 10 = 4

Pivot 𝐴 3 = 8

3 1 2 5 4 8 10 11 9 76

3 1 2 4 6 8 10 5 11 9 7

6 3 1 2 4 7 4 8 10 11 9



Find The Median

MedianFind(A[0..n-1])

Let A[p] be the pivot //TODO need to select p.

Let S and B be two arrays //”small” and “big” elements

for(i from 0 to n-1 except p)

if(A[i] <= A[p])

Copy A[i] into S

else 

Copy A[i] into B

if(S.length == n/2) return A[p] //A[p] is median

else if (S.length > n/2)

//return element n/2 of SORTED version of S

else

//return element n/2-S.length of SORTED version of B



//Filling In The Comments

We don’t want to sort! We could have done that right from the start.

But, wait, does “find the element that would be at index 𝑘 in sorted 
order without doing the sorting” sound familiar?

If we set k = 𝑛/2 that’s another way of saying find the median! 

This is a recursive call! Or at least it could be, if we just rephrase our 
problem a bit, and make the index a parameter…



Selection Problem

Input: An unsorted array and an index 𝑘

Output: The element that would be at index 𝑘 in the sorted version of A.

Set k = 𝑛/2 to get the median. 

Make sure you’re able to say in English exactly what you’re relying on a 
recursive call to give you:

QuickSelect(𝐴, 𝑘) returns the 𝑘th smallest element of 𝐴. (i.e. the one at 
index 𝑘 − 1)



Selection

QuickSelect(A[0..n-1], k)

Let A[p] be the pivot //TODO need to select p.

Let S and B be two arrays //”small” and “big” elements

for(i from 0 to n-1 except p)

if(A[i] <= A[p])

Copy A[i] into S

else 

Copy A[i] into B

if(S.length == k - 1) return A[p] //A[p] is index k

else if (S.length > k -1)

//return element k of SORTED version of S

else

//return element k-S.length of SORTED version of B



Selection

QuickSelect(A[0..n-1], k)

Let A[p] be the pivot //TODO need to select p.

Let S and B be two arrays //”small” and “big” elements

for(i from 0 to n-1 except p)

if(A[i] <= A[p])

Copy A[i] into S

else 

Copy A[i] into B

if(S.length == k - 1) return A[p] //A[p] is index k

else if (S.length > k -1)

QuickSelect(S, k)

else

QuickSelect(B, k-S.length)



Pivot Finding

The key to a good running time is now the same as quicksort – find a 
good pivot quickly!

What’s good? Near the middle.
Even if our desired index is not near the middle. Goal is to guarantee a decrease in 
problem size.



Pivot Finding

Remember median-of-three?

It’s a common heuristic for pivot finding for quicksort.

Take the median of three arbitrary elements (usually first, last, midpoint).
Guaranteed not to be the absolute worst pivot.

Let’s take that idea a lot further…



Pivot Finding

You can still find the median of 5 elements in constant time. (5 is a 
constant). 

Don’t just find the median of 5 elements and make that a pivot

…split the array into groups of 5 and get 𝑛/5 candidate pivots

5 4

17

32

53

101

32 5 17 53 101 10 4 23 15 98 …

If the array starts

10

15

23

98

Blue medians are candidates



Pivot Finding

Which of the 𝑛/5 candidates do you want?

How do we find the median of an array? 
QuickSelect! Another recursive call!

Is it the true median of the whole array? 
Not necessarily. But it’s a good pivot, we’ll see how good in a second.

Let’s see the pseudocode again…



Pivot Finding

int PivotFinder(A[])

Divide A into 𝑛/5 groups of 5.

Find the median of each group

Let M contain each of the 𝑛/5 medians

return QuickSelect(M, n/10) //median of M



Selection

QuickSelect(A[0..n-1], k)

p = PivotFinder(A)

Let S and B be two arrays //”small” and “big” elements

for(i from 0 to n-1 except A[p])

if(A[i] <= A[p])

Copy A[i] into S

else 

Copy A[i] into B

if(S.length == k - 1) return A[p] //A[p] is index k

else if (S.length > k -1)

QuickSelect(S, k)

else

QuickSelect(B, k-S.length)

𝑂(𝑛) and a recursive call



How Good Is Our Pivot?

How many elements smaller than the pivot can you find?

Imagine we lay out the grid with medians increasing left to right

54

17

32

53

101

10

15

23

98

All less than or equal to the pivot

𝑛

10
columns (half of the 𝑛/5)



How Good Is Our Pivot?

How many elements smaller than the pivot can you find?
𝑛

10
groups, each with at least 3 elements less than the pivot. 3𝑛/10

How many elements bigger? 

Same analysis: 
3𝑛

10

So how big is that last recursive call?

At most 7𝑛/10.

And what’s the size of the recursive call inside pivot selection? 𝑛/5.



Running Time Analysis

Let 𝑇(𝑛) be the running time of QuickSelect on an array of size 𝑛.

Non-recursive work? 



Selection

PivotFinder(A[0..n-1]) //assume n a multiple of 5

for(i from 0 to n/5-1)

Find median of A[5i], A[5i+1],…,A[5i+4]

Add median to C[]

return QuickSelect(C,n/10)

𝑂(𝑛)



Selection

QuickSelect(A[0..n-1], k)

p = PivotFinder(A)

Let S and B be two arrays //”small” and “big” elements

for(i from 0 to n-1 except A[p])

if(A[i] <= A[p])

Copy A[i] into S

else 

Copy A[i] into B

if(S.length == k - 1) return A[p] //A[p] is index k

else if (S.length > k -1)

QuickSelect(S, k)

else

QuickSelect(B, k-S.length)

𝑂(𝑛)

𝑂(𝑛) and a recursive call



Running Time Analysis

Let 𝑇(𝑛) be the running time of QuickSelect on an array of size 𝑛.

Non-recursive work? 𝑂(𝑛)

𝑇 𝑛 = ቊ
𝑂 1 if 𝑛 < 100
? ? ?+𝑂 𝑛 otherwise



Running Time Analysis

Let 𝑇(𝑛) be the running time of QuickSelect on an array of size 𝑛.

Non-recursive work? 𝑂(𝑛)

𝑇 𝑛 = ቐ
𝑂 1 if 𝑛 < 100

𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 𝑂 𝑛 otherwise



Running Time Analysis

𝑇 𝑛 = ቐ
𝑂 1 if 𝑛 < 100

𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 𝑂 𝑛 otherwise

So…what’s the closed form? Remember we need better than 𝑂(𝑛 log 𝑛).

It’s 𝑂(𝑛). The section solutions have a proof, for today, some intuition…

1. The total combined instance sizes add up to 9𝑛/10. A constant factor 
less than 𝑛.

2. Two recursive calls of combined size 9𝑛/10 is no worse than one call 
of size 9𝑛/10, as long as the function is concave or linear.



Takeaways

Wow! That was an unexpected algorithm.

You can implement quicksort with guaranteed 𝑂(𝑛 log 𝑛) running time!
Use QuickSelect to find the pivot.

Don’t actually do this though. Median-of-3 or a uniformly random pivot are better 
in practice.

Generalizing a problem can make it easier to solve

Instead of just the median, finding a general index is recursive.



More Detailed Analysis

You’re not responsible for this.



A simpler analysis
Let’s solve this other recurrence for intuition:

𝑅 𝑛 = ቐ
𝑂 1 if 𝑛 ≤ 100

𝑅
9𝑛

10
+ 𝑐 ⋅ 𝑛 otherwise

𝑅 𝑛 = 𝑅
9𝑛

10
+ 𝑐𝑛

= 𝑅
92𝑛

102
+

9

10
𝑐𝑛 + 𝑐𝑛

= 𝑅
93

103
𝑛 +

92

102
𝑐𝑛 +

9

10
𝑐𝑛 + 𝑐𝑛

…

= 𝑅
9𝑖

10𝑖
𝑛 + σ𝑗=0

𝑖−1 9𝑗

10𝑗
𝑐𝑛 Set 𝑖 = log10/9 𝑛

= 𝑂 1 + σ
𝑗=0

log10/9 𝑛−1 9𝑗

10𝑗
𝑐𝑛 ≤ 𝑂 1 + σ𝑗=0

∞ 9𝑗

10𝑗
𝑐𝑛 = 𝑂 1 + 𝑐𝑛 ⋅

1

1−
9

10

= 𝑂(𝑛)



Why groups of 5?

We want an odd number, so there’s a “real” median.

𝑛 = 3 is too small.

The pivot-selection recursive call becomes size 𝑛/3

The main recursive call becomes size 
2𝑛

3

So the “combined recursion size” is still 𝑛. That’s too big! We’ve 
“rearranged” work, not shrunk it.

Bigger than 5 is worse than 5: 

Intuitively, the median-finding is a “quadratic” brute force, while the 
recursive part is linear. Want recursion to do as much work as possible.



Why is the pivot aimed at the median?

Why not “aim for” the spot you’re really interested in?

So if you’re looking for spot 𝑘 in an array of size 𝑛, have the pivot finder be 
searching for 𝑘/𝑛 instead of 𝑛/2?

Spot 𝑘/𝑛 of a group of medians is not necessarily extremely close to spot 
𝑘/𝑛. Would have to change the brute force calculation as well.

Our pivot will always be an approximation. Need to make sure if we miss to 
the “small side” we’re still removing a substantial portion of the array. 

That might be possible, but harder to write and analyze. And it can only help 
in constant factors, for an algorithm you aren’t going to implement!



Can’t do better than 𝑂(𝑛).

The section handout has a proof that you can’t find the median faster 
than 𝑂(𝑛). 

Intuition: In less than 𝑂(𝑛) time, you can’t even look at every element. 
And if you don’t look at all the elements, you might not have seen the 
median itself!


