
Divide & Conquer CSE 421 Fall 2022

Lecture 9

This Week

Divide and Conquer. Using recursion to solve problems efficiently.

Start on Dynamic Programming (a 2+ week adventure in using recursive
thinking to solve problems efficiently).

Classic, beautiful algorithms.
Goal: see how far recursive thinking can take you.

Today:

What is D&C?

A classic D&C example

Define our problem for Wednesday

Divide & Conquer

Algorithm Design Paradigm

1. Divide instance into subparts.

2. Solve the parts recursively.

3. Conquer by combining the answers

You’ve seen Divide & Conquer before!

Merge Sort

0 1 2 3 4 5 6 7 8 9

8 2 91 22 57 1 10 6 7 4

CSE 373 19 SU - ROBBIE WEBER 4

https://www.youtube.com/watch?v=XaqR3G_NVoo

Divide

0 1 2 3 4

8 2 91 22 57

5 6 7 8 9

1 10 6 7 4

0 1 2 3 4

2 8 22 57 91

5 6 7 8 9

1 4 6 7 10

0 1 2 3 4 5 6 7 8 9

1 2 4 6 7 8 10 22 57 91

Combine

Sort the pieces through the magic of recursionmagic

https://www.youtube.com/watch?v=XaqR3G_NVoo

Merge Sort
0 1 2 3 4

8 2 57 91 22

mergeSort(input) {

if (input.length == 1)

return

else

smallerHalf = mergeSort(new [0, ..., mid])

largerHalf = mergeSort(new [mid + 1, ...])

return merge(smallerHalf, largerHalf)

}

0 1

8 2

0 1 2

57 91 22

0

8

0

2

0

57

0 1

91 22

0

91

0

22

0 1

22 91

0 1 2

22 57 91

0 1

2 8

0 1 2 3 4

2 8 22 57 91

Worst case runtime?

Best case runtime?

Average runtime?

Stable?

In-place?

1 if n<= 1

2T(n/2) + n otherwise

Yes

No

T(n) = = 𝑂(𝑛 log 𝑛)

Same

Same

Our First Problem

Given: A list of points in 2-dimensions
Return: The distance between the two points that are closest to each other.

Our First Problem – Baseline

Given: A list of points in 2-dimensions
Return: The distance between the two points that are closest to each
other.

What’s the first algorithm you can think of? What’s its running time?

Our First Problem – Baseline

Given: A list of points in 2-dimensions
Return: The distance between the two points that are closest to each
other.

What’s the first algorithm you can think of? What’s its running time?

Just calculate the distance between all pairs.

Θ 𝑛2 .

Keep in the back of your minds: if we aren’t doing better than Θ 𝑛2 we
haven’t made any progress.

An Easier Version

Given: A list of points in 1-dimension
Return: The distance between the two points that are closest to each other.

Your input will be a list of doubles (in no particular order).

What’s your algorithm?

An Easier Version

Given: A list of points in 1-dimension
Return: The distance between the two points that are closest to each other.

Your input will be a list of doubles (in no particular order).

What’s your algorithm?

Sort the list! Find the minimum dist(A[i], A[i+1])

Correctness:

Running time:

An Easier Version

Given: A list of points in 1-dimension
Return: The distance between the two points that are closest to each other.

Your input will be a list of doubles (in no particular order).

What’s your algorithm?

Sort the list! Find the minimum dist(A[i], A[i+1])

Correctness: After sorting, closest elements must be consecutive.

Running time: 𝑂(𝑛 log 𝑛) + 𝑂 𝑛 = 𝑂(𝑛 log 𝑛) .

2D Closest Points

Given: A list of points in 2-dimensions
Return: The distance between the two points that are closest to each other.

Back to the main problem.

Baseline is Θ 𝑛2

1D version is Θ(𝑛 log 𝑛)

2D Closest Points

Need to Divide and Conquer. How do we divide?

Back to the main problem.

Baseline is Θ 𝑛2

1D version is Θ(𝑛 log 𝑛)

2D Closest Points

Need to Divide and Conquer. How do we divide?
Median in one dimension seems like a good spot to split!

Back to the main problem.

Baseline is Θ 𝑛2

1D version is Θ(𝑛 log 𝑛)

Pseudocode

double 2DClosestPoints(P[1..n])

if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.

Sort P[] by 𝑥-coordinate

𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}

//TODO: conquer

2D Closest Points

Are we done? Just return 𝛿?

11

13

2D Closest Points

Are we done? Just return 𝛿?
No! What if the closest pair goes from the left to the right?

11

13

8

Conquer

Can we just check every pair that goes from the left to the right?

Some Questionable Pseudocode

double 2DClosestPoints(P[1..n])

if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.

Sort P[] by 𝑥-coordinate

𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}

for(𝑖 from 1 to 𝑛/2)

for(𝑗 from 𝑛/2 +1 to 𝑛)

𝛿 ← min{𝛿, dist(P[i],P[j])}

return 𝛿

Conquer

Can we just check every pair that goes from the left to the right?

Well…it’d, give us the right answer, but…

The key to divide & conquer is making sure the conquer step is a faster
calculation than brute force.

Otherwise it’s brute force all the way down!

Some Questionable Pseudocode

The Questionable Code on the last slide is equivalent to

𝛿 ← ∞

for(𝑖 from 1 to 𝑛)

for(𝑗 from 𝑖 + 1 to 𝑛)

𝛿 ←min{ dist(P[i],P[j]) }

Literally. They both check every possible 𝑖, 𝑗. The questionable code just

does the checks in a different order!

We need to use the results of our recursive calls to narrow down the

problem! How does 𝛿 help?

Deep Breath

Where were we?

We found the median, made two recursive calls.

We need to see if there is a pair with one point on the left, the other on
the right, with a closer distance than the recursive calls gave.

And we need to do it without looking at all possible pairs.

Pseudocode

double 2DClosestPoints(P[1..n])

if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.

Sort P[] by 𝑥-coordinate

𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}

//TODO: conquer

2D Closest Points

Conquer: Find the closest “crossing pair.”

11

13

8
Do we really need to

check this point?

Pseudocode

double 2DClosestPoints(P[1..n])

if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.

Sort P[] by 𝑥-coordinate

𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}

//TODO: conquer

Idea: We only care about a particular point if it is distance 𝛿 or less from

the dividing line. Otherwise it can’t possibly be in a “crossing” pair.

2D Closest Points

Do we need to check every pair?
Only care if distance is less than 𝛿. (Won’t be right answer otherwise)

11

13

𝛿 = 11

2D Closest Points

Can ignore the shaded regions. Only candidates are in the narrow strip.

11

13

𝛿 = 11

Conquering

In that example, we made the problem smaller because there were
fewer points…

…That doesn’t always happen.

But we’ve still made our problem easier!

How? Are problem is “almost” one-dimensional.

Almost One-Dimensional

If the problem were really one-dimensional, we could just sort and
check adjacent elements.

I.e. if P[i], P[j] were the closest points, then 𝑖 − 𝑗 = 1.

We can get pretty close.

Intuition: two points on the left must be at least 𝛿 from each other. Only
so much room in a 2𝛿 wide-strip to fit points in 𝛿 height too.

If dist(P[i],P[j])< 𝛿 and P[i], P[j]

are both in the middle strip, then 𝑖 − 𝑗 ≤ 11

Pseudocode

double 2DClosestPoints(P[1..n])

if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.

Sort P[] by 𝑥-coordinate

𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}

Let 𝐶 be all points within 𝛿 of the median in 𝑥-coordinate.

Sort 𝐶 by 𝑦-coordinate

for(𝑖 from 1 to 𝐶.length)

for(𝑗 from 𝑖 + 1 to 𝑖 + 11)

𝛿 ←min{dist(𝐶[𝑖], 𝐶[𝑗]), 𝛿}

return 𝛿

Prove the Lemma

Place a grid of 𝛿/2x𝛿/2 squares on the strip.

Strip is 4 squares wide.

If dist(P[i],P[j])≤ 𝛿 and P[i], P[j]

are both in the middle strip, then 𝑖 − 𝑗 ≤ 11

𝛿

2

𝛿

2

Prove the Lemma

Place a grid of 𝛿/2x𝛿/2 squares on the strip.

Only one point in each cell.

dist ≤
𝛿

2

2
+

𝛿

2

2
= 2 ⋅ 𝛿2/4 < 𝛿2 = 𝛿.

But 𝛿 is the smallest distance between points on
the same side (found via recursive calls).

If dist(P[i],P[j])≤ 𝛿 and P[i], P[j]

are both in the middle strip, then 𝑖 − 𝑗 ≤ 11

Prove the Lemma

Place a grid of 𝛿/2x𝛿/2 squares on the strip.

Only one point in each cell.
Two points in the same cell are on the same side and
distance < 𝛿.

If dist(P[i],P[j])≤ 𝛿 and P[i], P[j]

are both in the middle strip, then 𝑖 − 𝑗 ≤ 11

Prove the Lemma

Place a grid of 𝛿/2x𝛿/2 squares on the strip.

Only one point in each cell.
Two points in the same cell are on the same side and
distance < 𝛿.

If two points have distance < 𝛿, they are in the
same row, adjacent rows, or have one row
between them.

Two rows between gives 𝛿 distance in the 𝑦-
coordinate.

If dist(P[i],P[j])≤ 𝛿 and P[i], P[j]

are both in the middle strip, then 𝑖 − 𝑗 ≤ 11

𝛿

Prove the Lemma

Place a grid of 𝛿/2x𝛿/2 squares on the strip.

Only one point in each cell.
Two points in the same cell are on the same side and
distance < 𝛿.

If two points have distance < 𝛿, they are in the
same row, adjacent rows, or have one row
between them.

How far apart can those points be in the array?

Only 12 elements can be in those rows, so when
ordered by 𝑦-coordinate, difference is at most 11.

If dist(P[i],P[j])≤ 𝛿 and P[i], P[j]

are both in the middle strip, then 𝑖 − 𝑗 ≤ 11

It works!

A formal proof of correctness would be by induction.

Idea for IS:

Closest pair in overall instance is in one half, the other, or split. By IH,
recursive calls give distance between closest pairs in each half.

Case 1: closest pair is in a half,

Recursive call gives true shortest distance, by IH. 𝛿 will never be overwritten
because we only compare to other distances between points.

Case 2: closest pair crosses,

Then its distance is less than the (correct) distances found by the recursive
calls. By lemma, we will check the closest pair, and since we take the min, 𝛿
will be set to that value and (because we only compare to other distances)
never overwritten.

In both cases we return the true shortest distance.

Write a recurrence for the running time

double 2DClosestPoints(P[1..n])

if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.

Sort P[] by 𝑥-coordinate

𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}

Let 𝐶 be all points within 𝛿 of the median in 𝑥-coordinate.

Sort 𝐶 by 𝑦-coordinate

for(𝑖 from 1 to 𝐶.length)

for(𝑗 from 𝑖 + 1 to 𝑖 + 10)

𝛿 ←min{dist(𝐶[𝑖], 𝐶[𝑗]), 𝛿}

return 𝛿

Write a recurrence for the running time

double 2DClosestPoints(P[1..n])

if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.

Sort P[] by 𝑥-coordinate

𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}

Let 𝐶 be all points within 𝛿 of the median in 𝑥-coordinate.

Sort 𝐶 by 𝑦-coordinate

for(𝑖 from 1 to 𝐶.length)

for(𝑗 from 𝑖 + 1 to 𝑖 + 10)

𝛿 ←min{dist(𝐶[𝑖], 𝐶[𝑗]), 𝛿}

return 𝛿

Θ(𝑛 log 𝑛)

Recursive calls

size 𝑛/2

Θ(𝑛 log 𝑛)

𝑂(1) per

iteration

𝑂(𝑛)
iterations

Running Time

𝑇 𝑛 = ቐ
𝑂 1 if 𝑛 ≤ 100

2𝑇
𝑛

2
+ 𝑂(𝑛 log 𝑛) otherwise

𝑂(𝑛 log2 𝑛)

Small optimization: just sort by 𝑥 and 𝑦 once, and store the sorted
versions.

𝑇 𝑛 = ቐ
𝑂 1 if 𝑛 ≤ 100

2𝑇
𝑛

2
+ 𝑂(𝑛) otherwise

𝑂(𝑛 log 𝑛) for sorting, 𝑂(𝑛 log 𝑛) for everything else; total 𝑂(𝑛 log 𝑛).

How did I find this closed form?

For today, just believe it, we’ll give

you a tool on Friday.

It works!

Note that 𝛿/2 grid thing was just for the proof. Look back at the
pseudocode, the grid isn’t there.

Takeaways

A clever algorithm for finding closest points.

To make divide & conquer efficient, your conquer step must be faster
than brute forcing the “crossing” pairs.
Look for how the problem becomes simpler.

