
10/14/2022

1

An Easier Version
Given: A list of points in 1-dimension
Return: The distance between the two points that are closest to each other.

Your input will be a list of doubles (in no particular order).
What’s your algorithm?

Pseudocode

double 2DClosestPoints(P[1..n])
if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.
Sort P[] by 𝑥-coordinate
𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}
//TODO: conquer



10/14/2022

2

Some Questionable Pseudocode

double 2DClosestPoints(P[1..n])
if(𝑛 ≤ 100) //pick a cutoff you like; doesn’t matter for big-𝑂

check all possible pairs, return the smallest distance.
Sort P[] by 𝑥-coordinate
𝛿 ←min{2DClosestPoints(P[1..n/2]), 2DClosestPoints(P[n/2+1,n])}
for(𝑖 from 1 to 𝑛/2)

for(𝑗 from 𝑛/2 +1 to 𝑛)
𝛿 ← min{𝛿, dist(P[i],P[j])}

return 𝛿

Prove the Lemma
Place a grid of 𝛿/2x𝛿/2 squares on the strip.
Strip is 4 squares wide.

If dist(P[i],P[j])≤ 𝛿 and P[i], P[j]
are both in the middle strip, then 𝑖 − 𝑗 ≤ 11

𝛿

2

𝛿

2


