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Announcements

Starting with HW3, we expect you to fit your submissions into 2 pages.
Our solutions will fit into one-page LaTeXed, so you still have more space than us.

5 page submissions are bad for everyone:

- you’re not learning anything new on the bottom of page 4. It would be better to 
spend your time on other classes, or trying the extra problems in section 
handouts.

- TAs have limited time to grade, we don’t want them spending it skimming a 
needlessly long proof.

Try formatting algorithms as suggested on the style guide

Key idea (1-2 sentences); algorithm; proof; analysis.

You have HW solutions, our HW1 feedback, and section handouts for 
examples.



Yesterday’s Slides are corrected

“Fewest overlaps” is not an optimal greedy algorithm.

This is a good general lesson; algorithms are hard, we all make mistakes.

(And you’d be shocked how many slightly or totally incorrect I found on 
the internet this summer).

There’s a problem on HW3 that asks you to prove me wrong.



Approximation Algorithms

In 332 you learned about “NP-hard” problems. These are problems 
where we don’t have (or expect to ever have) polynomial time 
algorithms.

So what do you do if you really want to solve an NP-hard problem?

Sometimes you want an approximation algorithm!



Approximation Algorithms

What makes an approximation algorithm good?

Speed: We usually require approximation algorithms to run in 
polynomial time.

Accuracy:

NP-completeness will say that we can’t solve the problem exactly in 
polynomial-time, but (without more thinking/proofs) it doesn’t say we 
couldn’t efficiently get a solution that’s, say within 1% of the best 
solution.



Approximation Ratio

For a minimization problem (find the shortest/smallest/least/etc.)

If 𝑂𝑃𝑇(I) is the value of the best solution for input 𝐼, and 𝐴𝐿𝐺(𝐼) is the 
value that your algorithm finds, then 𝐴𝐿𝐺 is an 𝛼 approximation 
algorithm if for every 𝐼,

𝛼 ⋅ 𝑂𝑃𝑇 𝐼 ≥ 𝐴𝐿𝐺(𝐼)

i.e. you’re always within an 𝛼 factor of the real best.

Sometimes use big-𝒪 notation on the ratio.



Vertex Cover

Find the minimum vertex cover in 
a graph.

We’re picking a set of vertices so 
that the vertices cover every edge.

A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover



Vertex Cover A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

A valid vertex cover! (just take everything)

Definitely not the minimum though.

Find the minimum vertex cover in 
a graph.

We’re picking a set of vertices so 
that the vertices cover every edge.



Vertex Cover A set 𝑆 of vertices is a vertex cover if for every 

edge (𝑢, 𝑣):  𝑢 is in 𝑆, or 𝑣 is in 𝑆, (or both)

Vertex Cover

A better vertex cover – size 2 (only 2 vertices)

Find the minimum vertex cover in 
a graph.

We’re picking a set of vertices so 
that the vertices cover every edge.



Vertex Cover

Take a moment, think of greedy ideas that might work for finding a 
small vertex cover.



Vertex Cover

Take a moment, think of greedy ideas that might work for finding a 
small vertex cover.

Idea 1: Maximize the “edges covered to vertices taken” ratio

Take a vertex of highest degree remaining in the graph, add it to the VC.

Delete all its incident edges

Idea 2: At least one good one

Choose an (arbitrary) edge (𝑢, 𝑣). At least one of 𝑢, 𝑣 is in the minimum 
VC. But both in your VC. Delete all incident edges.



Non-optimal

You’ll show on the homework that idea 1 isn’t optimal.

Focus on idea 2, come up with a graph where it could give you the 
optimal VC, and another where it doesn’t.





If the algorithm selects the central 

edge, we get the optimal VC.

Any first edge will add two to the VC, and 

leave the opposite edge uncovered.

The algorithm finds a VC of size 4. 

The optimal is 2.



Approximation Ratio

The ratio between ALG and OPT on that graph was only 2 (4/2).

So is the approximation ratio for the algorithm 2?

We don’t know that yet!

Remember approximation ratio is a worst-case measure

It’s also asymptotic (we want 𝑛 arbitrarily large, not 𝑛 = 11)

But it turns out it is 2. Let’s see why.



How do we analyze an approximation 
algorithm?

Need to find an 𝛼 so it’s always true that 𝛼 ⋅ OPT ≤ ALG.

These proofs aren’t always easy to write!

We usually don’t “understand” OPT very well. If we did, we’d run an 
algorithm to find it! 

Take 521 (or do undergrad research!) to learn more

We’re going to see one example proof today.



Finding an approximation for Vertex Cover

Here’s Idea 2

While(G still has edges)

Choose any edge (u,v)

Add u to VC, and v to VC

Delete u v and any edges touching them

EndWhile

Why? At least one of 𝑢, 𝑣 is in the vertex cover. We know we’re not 
getting the exact optimal, so…don’t try. At least one of the two was a 
good decision.



Does it work?

Do we find a vertex cover? (Is the solution valid?)

Is it close to the smallest one? (Is the solution good?)

But first, let’s notice – this is a polynomial-time algorithm!

If we’re going to take exponential time, we can get the exact answer. We 
want something fast if we’re going to settle for a worse answer.



Do we find a vertex cover?

Observe that we only delete an edge after we have ensured it will be 
covered.

When we delete an edge, the edge is covered by whichever endpoint 
caused it to be deleted (because we added both vertices of the chosen 
edge to the vertex cover). 

And we only stop the algorithm when every edge has been deleted. So 
every edge is covered (i.e. we really have a vertex cover).



How big is it?

Let 𝑂𝑃𝑇 be a minimum vertex cover.

Key idea: “charge” or “assign” each vertex we add to 𝐴𝐿𝐺’s solution to a 
vertex in 𝑂𝑃𝑇. If every vertex in 𝑂𝑃𝑇 gets “assigned” at most 𝑘 vertices 
of 𝑂𝑃𝑇 then it must be that 𝑘 ⋅ 𝑂𝑃𝑇 ≤ 𝐴𝐿𝐺.

You’ve seen this proof technique before! Finding a bijection between 
two sets says they are the same size. That’s 𝑘 = 1 with the technique 
above.



What assignment do we pick?

Key is finding what in 𝑂𝑃𝑇 we are going to charge to…

Claim: For every (𝑢, 𝑣) from 𝐴𝐿𝐺,

Why? (𝑢, 𝑣) was an edge! 𝑂𝑃𝑇 covers (𝑢, 𝑣) so at least one is in 𝑂𝑃𝑇.

Charge both (𝑢, 𝑣) to whichever was in 𝑂𝑃𝑇. 

We assign at most two vertices of 𝐴𝐿𝐺 to every one in 𝑂𝑃𝑇, so we have 
a 2-approximation.



Greedy Approximation Algs

Greedy Algorithms are a very common source for approximation 
algorithms!

Since you’re making an optimal “local” choice, it’s not likely to be a 
terrible solution (even if it’s rarely the absolute best one).

It’s still simple to implement and fast!

And the proofs aren’t nearly as hard anymore!!



Set Cover

A generalization of vertex cover:

Let 𝑈 be a universe, 

And ℱ ⊆ 𝒫(𝑈) be a family of 
subsets of 𝑈.

𝒮 ⊆ ℱ is a cover if ڂ𝑆∈𝒮 𝑆 = ℱ

The size of a cover is the number 
of sets in 𝒮.

For example, 𝑈 = 1,2,3,4,5,6
ℱ = { 1,2,3 , 3,4,5 , 5,6 , 2,4,6 }.

For example { 1,2,3 , 5,6 , 2,4,6 }
is a cover. 

The cover above is size 3.

To make a VC problem look like set cover:

𝑈 is the set of edges

Elements of ℱ are all the edges touching a single vertex.



Set Cover

Not clear how to adapt idea 2; we’re using something specific to graphs 
(that every element of 𝑈 appears in exactly two of the elements of ℱ)

Idea 1 still would work though:

Idea 1: Maximize the “edges covered to vertices taken” ratio

Take a vertex of highest degree remaining in the graph, add it to the VC.

Delete all its incident edges

Elements of 𝑈 sets

Set with maximum number of uncovered elements SC

Newly covered elements of 𝑈



Run the greedy algorithm

Let 𝑈 = {1,2,3,4,5,6,7,8}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }



Run the greedy algorithm

Let 𝑈 = {1,2,3,4,5,6,7,8}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }

Take {1,2,3}

Remaining to cover {4,5,6,7,8}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }



Run the greedy algorithm

Let 𝑈 = {1,2,3,4,5,6,7,8}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }

Take {1,2,3}

Remaining to cover {4,5,6,7,8}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }

Take {5,7,8}

Remaining to cover {4,6}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }



Run the greedy algorithm

Let 𝑈 = {1,2,3,4,5,6,7,8}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }

Take {1,2,3}

Remaining to cover {4,5,6,7,8}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }

Take {5,7,8}

Remaining to cover {4,6}

𝑆 = { 1,2,3 , 2,4 , 6,8 , 3,5,7 , 5,7,8 , 2,5,6 , 4 }

Take 2,4 then {6,8}.



Approximation Ratio?

Let 𝑘 be the size of 𝑂𝑃𝑇. 

Claim: If there are 𝑚 elements remaining, then some set covers at least 
𝑚/𝑘 of them.

That applies at every step! So after 𝑖 selections, the number of elements 
remaining to be covered is at most

𝑛 1 −
1

𝑘

𝑖
= 𝑛 1 −

1

𝑘

𝑘
𝑖/𝑘

≤ 𝑛𝑒−𝑖/𝑘



Approximation Ratio?

After 𝑖 steps, there are 𝑛𝑒−𝑖/𝑘 elements remaining. There will be 1 left 
when

𝑛𝑒−𝑖/𝑘 = 1

𝑛 = 𝑒𝑖/𝑘

ln 𝑛 = 𝑖/𝑘

𝑖 = 𝑘 ⋅ ln 𝑛 .

So the approximation ratio is about ln(𝑛)

(ignoring some off-by-one errors to get here).



A Bad Example

Greedy might take:

Red, gold, purple, 

green, green (boxes 

spanning both rows)

OPT will take each row.

Example is 5 to 2.

Doubling the instance 

adds 1 to ALG, 0 to OPT

That gives us a log(𝑛)
ratio.


