
More Greedy Algorithms CSE 421 22AU

Lecture 7



Outline

Last Time
Practice with proofs for greedy algorithms (already knew the algorithm)

Today
Practice with generating greedy algorithms itself.

and maybe the proof at the end.

Section Tomorrow
Practice yourself; general problem solving process you’ll continue to use all quarter.



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

3 non-overlapping 

intervals



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

3 other non-

overlapping intervals



Interval Scheduling

You have a single processor, and a set of jobs with fixed start and end 
times.

Your goal is to maximize the number of jobs you can process.

I.e. choose the maximum number of non-overlapping intervals.

OPT is 3 – there is no way to have 4 non-overlapping intervals; 

both the red and purple solutions are equally good.



Greedy Ideas

To specify a greedy algorithm, we need to:

Order the elements (intervals)

Choose a rule for deciding whether to add.
Rule: Add interval as long as it doesn’t overlap with those we’ve already 
selected. 

What ordering should we use?

Think of at least two orderings you think might work.



Greedy Algorithm

Some possibilities

Earliest end time (add if no overlap with previous selected)

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Greedy

That list slide is the real difficulty with greedy algorithms.

All of those look at least somewhat plausible at first glance.

With MSTs that was fine – those ideas all worked! 

It’s not fine here.

They don’t all work.

As a first step – try to find counter-examples to narrow down



Greedy Algorithm

Earliest end time

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Take Earliest Start Time – Counter Example



Take Earliest Start Time – Counter Example

Taking the one with the earliest start time doesn’t give us the best 
answer. 

Algorithm finds

Optimum



Shortest Interval



Shortest Interval

Taking the shortest interval first doesn’t give us the best answer

Algorithm finds

Optimum



Greedy Algorithm

Earliest end time

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Earliest End Time

Intuition: If 𝑢 has the earliest end time, and 𝑢 overlaps with 𝑣 and 𝑤
then 𝑣 and 𝑤 also overlap. 

Why?

If 𝑢 and 𝑣 overlap, then both are “active” at the instant before 𝑢 ends 
(otherwise 𝑣 would have an earlier end time).

Otherwise 𝑣 would have an earlier end time than 𝑢! By the same 
reasoning, 𝑤 is also “active” the instant before 𝑢 ends. So 𝑣 and 𝑤 also 
overlap with each other.



Earliest End Time

Can you prove it correct? 

Do you want to use

Structural Result

Exchange Argument

Greedy Stays Ahead



Exchange Argument

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑘 be the set of intervals selected by the greedy 
algorithm, ordered by endtime

OPT= 𝑜1, 𝑜2, … , 𝑜ℓ be the maximum set of intervals, ordered by endtime.

Our goal will be to “exchange” to show 𝐴 has at least as many elements 
as OPT. 

Let 𝑎𝑖 , 𝑜𝑖 be the first two elements where 𝑎𝑖 and 𝑜𝑖 aren’t the same. 
Since 𝑎𝑖−1 and 𝑜𝑖−1 are the same, neither 𝑎𝑖 nor 𝑜𝑖 overlaps with any of 
𝑜1, … , 𝑜𝑖−1. And by the greedy choice, 𝑎𝑖 ends no later than 𝑜𝑖 so 
𝑎𝑖 doesn’t overlap with 𝑜𝑖+1. So we can exchange 𝑎𝑖 into OPT, replacing 
𝑜𝑖 and still have OPT be valid. 



Exchange Argument

Repeat this argument until we have changed OPT into 𝐴.

Can OPT have more elements than 𝐴? 

No! After repeating the argument, we could change every element of 
OPT to 𝐴. If OPT had another element, it wouldn’t overlap with anything 
in OPT, and therefore can’t overlap with anything in 𝐴 after all the 
swaps. But then the greedy algorithm would have added it to 𝐴.

So 𝐴 has the same number of elements as OPT does, and we really 
found an optimal 



Greedy Stays Ahead

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑘 be the set of intervals selected by the greedy 
algorithm, ordered by endtime

OPT= 𝑜1, 𝑜2, … , 𝑜ℓ be the maximum set of intervals, ordered by endtime.

Our goal will be to show that for every 𝑖, 𝑎𝑖 ends no later than 𝑜𝑖.

Proof by induction:

Base case: 𝑎1 has the earliest end time of any interval (since there are no 
other intervals in the set when we consider 𝑎1 we always include it), thus 
𝑎1 ends no later then 𝑜1.



Greedy Stays Ahead

Inductive Hypothesis: Suppose for all 𝑖 ≤ 𝑘, 𝑎𝑖 ends no later than 𝑜𝑖.

IS: Since (by IH) 𝑎𝑘 ends no later than 𝑜𝑘 , greedy has access to 
everything that doesn’t overlap with 𝑎𝑘 . Since 𝑎𝑘 ends no later than 𝑜𝑘, 
that includes 𝑜𝑘+1. Since we take the first one that doesn’t overlap, 𝑎𝑘+1
will also end before 𝑜𝑘+1.

Therefore 𝑎𝑘+1 ends no later than 𝑜𝑘+1

Wrapping Up: Since every 𝑎𝑖 ends no later than 𝑜𝑖, the last interval 
greedy selects (𝑎𝑛) is no later than 𝑜𝑛. There cannot be an 𝑜𝑛+1, as if it 
didn’t overlap with 𝑜𝑛 it also wouldn’t overlap with 𝑎𝑛 and would have 
been added by greedy. 



Greedy Algorithm

Earliest end time

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals)



Other Greedy Algorithms

It turns out latest start time and fewest overlaps also work.

Latest start time is actually the same as earliest end time (imagine 
“reflecting” all the jobs along the time axis – the one with the earliest 
end time ends up having the last start time). 

What about fewest overlaps? 

Easiest proof Robbie knows observes that fewest overlaps means you 
have the earliest finish time (among a certain subset of the intervals)



Greedy Algorithm

Earliest end time

Latest end time 

Earliest start time

Latest start time

Shortest interval 

Fewest overlaps (with remaining intervals) Retcon! 

Robbie was wrong about

this in lecture --- fewest 

overlaps isn’t optimal either!



Summary

Greedy algorithms

You’ll probably have 2 (or 3…or 6) ideas for greedy algorithms. Check 
some simple examples before you implement! 
Greedy algorithms rarely work.

When they work AND you can prove they work, they’re great!

Proofs are often tricky 

Structural results are the hardest to come up with, but the most 
versatile.

Greedy stays ahead usually use induction

Exchange start with the first difference between greedy and optimal.


