
10/9/2022

1

Kruskal’s Algorithm

KruskalMST(Graph G) 
initialize each vertex to be its own component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

Prim’s Algorithm
PrimMST(Graph G) 

initialize costToAdd to ∞
mark source as costToAdd 0
mark all vertices unprocessed, mark source as processed
foreach(edge (source, v) ) {

v.costToAdd = weight(source,v)
v.bestEdge = (source,v)

}
while(there are unprocessed vertices){

let u be the cheapest to add unprocessed vertex
add u.bestEdge to spanning tree
foreach(edge (u,v) leaving u){

if(weight(u,v) < v.costToAdd AND v not processed){
v.costToAdd = weight(u,v)
v.bestEdge = (u,v)

}
}

mark u as processed
}



10/9/2022

2

Safe Edge

A

B

D
F

E

C

50
6

3

4

7

2

8

9

5

7

G

2

A

B

D
F

E

C

50
6

3

4

7

2

8

9

5

7

G

2

(A,B) is a safe edge

(C,D) is a safe edge

Call an edge, 𝑒, a “safe edge” if there is some cut (𝑆, 𝑉 ∖ 𝑆)
where 𝑒 is the minimum edge spanning that cut

What about Kruskal’s?
Exchange argument:

General outline:
Suppose, you didn’t find the best one.
Suppose there’s a better MST
Then there’s something in the algorithm’s solution that doesn’t match 
OPT. (an edge that isn’t a safe edge/that’s heavier than it needs to be)
Swap (exchange) them, and finish the proof (arrive at a contradiction or 
show that your solution is equal in quality)!


