
Minimum Spanning Trees 
and Greedy Algorithms 

CSE 421 Fall 2022

Lecture 6



Announcements

Remember that we always care about efficiency of algorithms. Unless 
we explicitly say otherwise:

A slightly-less-efficient algorithm will receive slightly-less points.

A significantly-less-efficient algorithm (like an exponential one) will 
receive significantly-less points.

We don’t care about constant factors.



This Week

Another abrupt change of topic.

In fact, the whole course is a sequence of seemingly-abrupt topic 
changes…

We’re giving you a list of tools – a list of common ways of thinking when 
approaching a new problem.

Think of each week as a new tool in your toolbox.



Greedy Algorithms

What’s a greedy algorithm?

An algorithm that builds a solution by:

Considering objects one at a time, in some order.

Using a simple rule to decide on each object.

Never goes back and changes its mind. 

Greedily do what looks best for you right here, right now.



Greedy Algorithms

PROS

Simple

CONS

Rarely correct

Often multiple equally intuitive 
options

Hard to prove correct
Usually need a fancy “structural result”

Or complicated proof by contradiction

Or subtle proof by induction

Need to focus 

on proofs!



Your Takeaways

Greedy algorithms are great when they work.

But it’s hard to tell when they work – the proofs are subtle.

And you can often invent 2-3 different greedy algorithms; it’s rare that 1 
gives you the best answer, extremely rare that all would.
So you have to be EXTREMELY careful.

But they are very often useful when you need an answer that is very 
good, but not optimal (more on Friday).



Three Common Proof Styles

“Structural result” – the best solution must look like this, and the 
algorithm produces something that looks like this.

Greedy stays ahead – at every step of the algorithm, the greedy 
algorithm is at least as good as anything else could be.

Exchange – Contradiction proof, suppose we swapped in an element 
from the (hypothetical) “better” solution.

Where to start? With some greedy algorithms you’ve already seen. 

Minimum Spanning Trees!



Minimum Spanning Trees

It’s the 1920’s. Your friend at the electric company needs to choose 
where to build wires to connect all these cities to the plant. 

A

B

D

E

C

3

6

2

1

4

5

8

9
10

7

She knows how much it would cost to lay electric wires between any 

pair of cities, and wants the cheapest way to make sure electricity from 

the plant to every city.



Minimum Spanning Trees

What do we need? A set of edges such that:
Every vertex touches at least one of the edges. (the edges span the graph)

The graph on just those edges is connected.

The minimum weight set of edges that meet those conditions.

Given: an undirected, weighted graph G

Find: A minimum-weight set of edges such that you can get 

from any vertex of G to any other on only those edges.

Minimum Spanning Tree Problem



Greedy MST algorithms

You’ve seen two algorithms for MSTs

Kruskal’s Algorithm:

Order: Sort the edges in increasing weight order

Rule: If connect new vertices (doesn’t form a cycle), add the edge.

Prim’s Algorithm:

Order: lightest weight edge that adds a new vertex to our current 
component

Rule: Just add it!



Kruskal’s Algorithm

KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same component

}

}



Try It Out

A

B

D F

E

C

3 6

2
1

4

5

8

9
10

7

KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same 

component

}

}

Edge Include? Reason

(A,C)

(C,E)

(A,B)

(A,D)

(C,D)

Edge (cont.) Inc? Reason

(B,F)

(D,E)

(D,F)

(E,F)

(C,F)



Try It Out

A

B

D F

E

C

3 6

2
1

4

5

8

9
10

7

KruskalMST(Graph G) 

initialize each vertex to be its own component

sort the edges by weight

foreach(edge (u, v) in sorted order){

if(u and v are in different components){

add (u,v) to the MST

Update u and v to be in the same 

component

}

}
Edge Include? Reason

(A,C) Yes

(C,E) Yes

(A,B) Yes

(A,D) Yes

(C,D) No Cycle A,C,D,A

Edge (cont.) Inc? Reason

(B,F) Yes

(D,E) No Cycle A,C,E,D,A

(D,F) No Cycle A,D,F,B,A

(E,F) No Cycle A,C,E,F,D,A

(C,F) No Cycle C,A,B,F,C



Prim’s Algorithm
PrimMST(Graph G) 

initialize costToAdd to ∞

mark source as costToAdd 0

mark all vertices unprocessed, mark source as processed

foreach(edge (source, v) ) {

v.costToAdd = weight(source,v)

v.bestEdge = (source,v)

}

while(there are unprocessed vertices){

let u be the cheapest to add unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.costToAdd AND v not processed){

v.costToAdd = weight(u,v)

v.bestEdge = (u,v)

}

}

mark u as processed

}



Try it Out

Vertex costToAdd Best Edge Processed

A

B

C

D

E

F

G

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

PrimMST(Graph G) 

initialize costToAdd to ∞
mark source as costToAdd 0

mark all vertices unprocessed

mark source as processed

foreach(edge (source, v) ) {

v.costToAdd = weight(source,v)

v.bestEdge = (source,v)

}

while(there are unprocessed vertices) {

let u be the cheapest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.costToAdd

AND v not processed){

v.costToAdd = weight(u,v)

v.bestEdge = (u,v)

}

} 

mark u as processed

}



Try it Out

Vertex costToAdd Best Edge Processed

A -- -- Yes

B 2 (A,B) Yes

C 4 (A,C) Yes

D 7 2 (A,D)(C,D) Yes

E 6 5 (B,E)(C,E) Yes

F 3 (B,F) Yes

G 50 (B,G) Yes

A

B

D
F

E

C

50
6

3

4

7

2

8

9
5

7

G

2

PrimMST(Graph G) 

initialize costToAdd to ∞
mark source as costToAdd 0

mark all vertices unprocessed

mark source as processed

foreach(edge (source, v) ) {

v.costToAdd = weight(source,v)

v.bestEdge = (source,v)

}

while(there are unprocessed vertices) {

let u be the cheapest unprocessed vertex

add u.bestEdge to spanning tree

foreach(edge (u,v) leaving u){

if(weight(u,v) < v.costToAdd

AND v not processed){

v.costToAdd = weight(u,v)

v.bestEdge = (u,v)

}

} 

mark u as processed

}



Correctness

You’re already familiar with the algorithms. 

We’ll use this problem to practice the proof techniques.

We’ll do both structural and exchange



Structural Proof

For simplicity – assume all edge weights are distinct and that there is 
only one minimum spanning tree.

“Structural result” – the best solution must look like this, and the 
algorithm produces something that looks like this.

Example: every spanning tree has 𝑛 − 1 edges. 
So we better have our algorithm produce 𝑛 − 1 edges.

Is that enough? No! Lots of different trees (including non minimum 
ones) have 𝑛 − 1 edges. Need to say which edges are in the tree.



Safe Edge

A “cut” 𝑆, 𝑉 ∖ 𝑆 is a split of the vertices into a subset 𝑆 and the 
remaining vertices 𝑉 ∖ 𝑆.

Edges in red “span” or “cross” the cut (go from 𝑆 to 𝑉 ∖ 𝑆).

A

B

D
F

E

C

50

6

3

4

7

2

8

9

5

7

G

2

𝑆 = {𝐴, 𝐶, 𝐷, 𝐺}



Safe Edge

A

B

D
F

E

C

50

6

3

4

7

2

8

9

5

7

G

2

A

B

D
F

E

C

50

6

3

4

7

2

8

9

5

7

G

2

(A,B) is a safe edge

(C,D) is a safe edge

Call an edge, 𝑒, a “safe edge” if there is some cut (𝑆, 𝑉 ∖ 𝑆)
where 𝑒 is the minimum edge spanning that cut



MSTs and Safe Edges

Claim: Every safe edge is in the MST. 

Proof: Suppose, for the sake of contradiction, that 𝑒 = (𝑢, 𝑣) is a safe 
edge, but not in the MST. 

Let (𝑆, 𝑉 ∖ 𝑆) be a cut where 𝑒 is the minimum edge spanning (𝑆, 𝑉 ∖ 𝑆). 
Let 𝑇′ be the MST. The MST has (at least one) an edge 𝑒′ that crosses 
the cut (since we can get from 𝑢 to 𝑣 in 𝑇′)

𝑒

𝑒′𝑆 𝑉 ∖ 𝑆



MSTs and Safe Edges

Add 𝑒=(𝑢, 𝑣) to 𝑇′. 

The new graph has a cycle including both 𝑒 and 𝑒′, The cycle exists 
because 𝑢 and 𝑣 were connected to each other in 𝑇′ (since it was a 
spanning tree).

Consider 𝑇′′, which is 𝑇′ with 𝑒 added and 𝑒′ removed.

𝑒

𝑒′𝑆 𝑉 ∖ 𝑆

Claim: Every safe edge is in the MST.



MSTs and Safe Edges

Consider 𝑇′′, which is 𝑇′ with 𝑒 added and 𝑒′ removed.

𝑇′′ spans: if the path from 𝑥 to 𝑦 in 𝑇′ didn’t use 𝑒′ it still exists. If it did 
use 𝑒′, follow along the path to 𝑒′, along the cycle through 𝑒 to the 
other side. 

And it’s a tree (it has 𝑛 − 1 edges). 

What’s its weight? Less than 𝑇′; 𝑒 was the lightest edge spanning (𝑆, 𝑉 ∖
𝑆). That’s a contradiction! 𝑇′ was the minimum spanning tree.

𝑒

𝑒′𝑆 𝑉 ∖ 𝑆

Claim: Every safe edge is in the MST.



Structural Result

That’s the structural result.

So what? The goal is to analyze an algorithm!

Let’s start with Prim’s!

𝑒 is a “safe edge” if there is some cut (𝑆, 𝑉 ∖ 𝑆)
where 𝑒 is the minimum edge spanning that cut.

Theorem: Every safe edge is in the MST.



Prim’s only adds safe edges

Claim: Prim’s only adds safe edges. 

When we add an edge, we add the minimum weight one among those 
that span from the already connected vertices to the not-yet-connected 
ones. 

That’s a cut! And that cut shows the edge we added is safe!

Are we done? Do we know Prim’s Algorithm is correct now?

Not yet! What if there are still other edges to add!



Why Aren’t We Done?

Imagine we define an “ultra-safe” edge as an edge that is lighter than 
every other edge in the graph. 

With a similar proof to our last one, you can show every “ultra-safe” 
edge is in the MST.

Now imagine Brim’s Algorithm: sort the edges by increasing weight, add 
the first edge in the sorted list. 

Brim’s algorithm only adds ultra-safe edges! 

But that’s not a correct MST algorithm!!!



Prim’s only adds safe edges

Claim: Prim’s only adds safe edges. 

When we add an edge, we add the minimum weight one among those 
that span from the already connected vertices to the not-yet-connected 
ones. 

That’s a cut! And that cut shows the edge we added is safe!

So we only add safe edges…

…and we produce an acyclic, connected, spanning graph (since each 
edge must connect new vertices, we can’t create a cycle; the loop ends 
only when the graph is connected). So we have a (full) spanning tree.



An Exchange Argument



What about Kruskal’s?

Exchange argument:

General outline:

Suppose, you didn’t find the best one.

Suppose there’s a better MST

Then there’s something in the algorithm’s solution that doesn’t match 
OPT. (an edge that isn’t a safe edge/that’s heavier than it needs to be)

Swap (exchange) them, and finish the proof (arrive at a contradiction or 
show that your solution is equal in quality)!



Kruskal’s Proof (v1)

Suppose, for the sake of contradiction, 𝑇𝐾, the tree found by Kruskal’s 
algorithm isn’t a minimum spanning tree. Let 𝑇′be the true minimum 
spanning tree. 

Let 𝑒 = (𝑢, 𝑣) be an edge in 𝑇𝐾 but not 𝑇′. Add 𝑒 to 𝑇′. In doing so we 
created a cycle, 𝐶, (𝑒 along with the path from 𝑢 to 𝑣 in 𝑇′, which exists 
because 𝑇′spanned.). 

Our goal is to do an exchange argument – we need a new lighter tree!

We divide into cases, 

Case 1: 𝑒 is not the heaviest edge in 𝐶. Then delete the heaviest edge to 
create 𝑇′′. Since 𝑒 replaced the heavier edge, 𝑇′′ is lighter than 𝑇′. And 𝑇′′ is a 
spanning tree (𝑇′′ has n-1 edges and spans because 𝑇′ did and we just 
deleted an edge on a cycle). But that contradicts 𝑇′ being the MST!



Kruskal’s Proof (v1, cont.)

We won’t be able to reach a contradiction from the cycle, but we will find 
another edge to examine 

Case 2: 𝑒 is the heaviest edge in 𝐶.

Since Kruskal’s added 𝑒 to our graph, there must be some edge, 𝑓, on the 
cycle which was not in 𝑇𝐾. But 𝑓 was processed before 𝑒 by Kruskal’s (since 𝑒
is heavier). Which means 𝑓 would have formed a cycle, 𝐶′ in 𝑇𝐾 had it been 
added when it was processed. 

By the process ordering, 𝑓 is the heaviest edge in 𝐶′. There are no cycles in 𝑇′
(since it’s a tree) so there is an edge (call it 𝑒′) in 𝐶′ that is not in 𝑇′. This new 
edge 𝑒′ meets exactly the assumptions we had on 𝑒, but is lighter. 

Repeat the original argument on 𝑒′. Since the graph is finite, we must 
eventually hit Case 1, which gives our needed contradiction.



Kruskal’s Proof (pretty version)

Suppose, for the sake of contradiction, 𝑇𝐾, the tree found by Kruskal’s 
algorithm isn’t a minimum spanning tree. Let 𝑇′be the true minimum 
spanning tree. 

Let 𝑒 = (𝑢, 𝑣) be the lightest edge in 𝑇𝐾 but not in 𝑇′. Add 𝑒 to 𝑇′, and we 
will create a cycle (because there is a way to get from 𝑢 to 𝑣 in 𝑇′ by it being 
a spanning tree). 

𝑒 is not the heaviest edge on the cycle. Anything lighter than 𝑒 is already in 
𝑇𝐾, and we put 𝑒 in 𝑇𝐾 so it didn’t create a cycle there (since we check for 
cycles before adding it). That means there is an edge on the cycle heavier 
than 𝑒. Delete that edge, and call the resulting graph 𝑇′′. Observe that 𝑇′′ is a 
spanning tree (it has 𝑛 − 1 edges, and spans all the same vertices 𝑇′ did since 
we deleted an edge from a cycle). But it has less weight than 𝑇′ which was 
supposed to be the MST. That’s a contradiction!



Hey…Wait a minute

Those arguments were pretty similar. They both used an “exchange” 
idea.

The boundaries between the proof principles are a little blurry…

They’re meant to be useful for you for thinking about “where to start” 
with a proof, not be a beautiful taxonomy of exactly what you do in 
every possible proof.



Wrapping MSTs



Another MST Algorithm

Boruvka’s Algorithm (also called Sollin’s Algorithm)

Start with empty graph, use BFS to find lightest edge leaving each 
component. 

Add ALL such edges found (they’re all safe edges)

Recurse until the graph is all one component (i.e. a tree)

Consider it for your practical applications! 

It naturally parallelizes (unlike the other MST algorithms), 

Has same worst case running time as Prim’s/Kruskal’s!



More Greedy



Trip Planning

Your goal is to follow a pre-set route from New York to Los Angeles.

You can drive 500 miles in a day, but you need to make sure you can 
stop at a hotel every night (all possibilities premarked on your map)

You’d like to stop for the fewest number of nights possible – what 
should you plan?

Greedy: Go as far as you can every night. 

Is greedy optimal?

Or is there some reason to “stop short” that might let you go further the 
next night?



Trip Planning

Greedy works!

Because “greedy stays ahead” 

Let 𝑔𝑖 be the hotel you stop at on night 𝑖 in the greedy algorithm.

Let 𝑂𝑃𝑇𝑖 be the hotel you stop at in the optimal plan (the fewest nights plan). 

Claim: 𝑔𝑖 is always at least as far along as 𝑂𝑃𝑇𝑖.

Intuition: they start at the same point before day 1, and greedy goes as far as 
possible, so is “ahead” after day 1. 

And if greedy is “ahead” at the start of the day, it will continue to be ahead at the 
end of the day (since it goes as far as possible, and the distance you can go doesn’t 
depend on where you start). 

Therefore it’s always ahead. And so it uses at most the same number of days as all 
other solutions.



Trip Planning

Greedy works!

Because “greedy stays ahead” 

Let 𝑔𝑖 be the hotel you stop at on night 𝑖 in the greedy algorithm.

Let 𝑂𝑃𝑇𝑖 be the hotel you stop at in the optimal plan (the fewest nights 
plan). 

Claim: 𝑔𝑖 is always at least as far along as 𝑂𝑃𝑇𝑖.

Base Case: 𝑖 = 1, OPT and the algorithm choose between the same set 
of hotels (all at most 500 miles from the start), 𝑔𝑖 is the farthest of those 
by the algorithm definition, so 𝑔𝑖 is at least as far as 𝑂𝑃𝑇𝑖 .



Trip Planning

Inductive Hypothesis: Suppose through the first 𝑘 hotels, 𝑔𝑘 is farther 
along than 𝑂𝑃𝑇𝑘.

Inductive Step: 

When we select 𝑔𝑘+1, we can choose any hotel within 500 miles of 𝑔𝑘, 
since 𝑔𝑘 is at least as far along as 𝑂𝑃𝑇𝑘 everything less than 500 miles 
after 𝑂𝑃𝑇𝑘 is also less than 500 miles after 𝑔𝑘. Since we take the farthest 
along hotel, 𝑔𝑘+1 is at least as far along as 𝑂𝑃𝑇𝑘+1.


