
10/5/2022

1

Running DFS

A

F

D

E

C

B

G

Start from A

DFS(u)
Mark u as “seen”
u.start = counter++
For each edge (u,v) //leaving u

If v is not “seen”
DFS(v)

End If
End For
u.end = counter++

The orange edges (the ones where we discovered a new 
vertex) form a tree!*
We call them tree edges.

That blue edge went from a descendent to an ancestor
B was still on the stack when we found (B,D). 
We call them back edges.

The green edge went from an ancestor to a descendant
F was put on and come off the stack between putting A on 
the stack and finding (A,F)
We call them forward edges.

The purple edge went…some other way.
D had been on and come off the stack before we found F 
or (F,D)
We call those cross edges.

*Conditions apply. Sometimes the graph is a forest. But we call 
them tree edges no matter what.

1 12

2 11

3 6

4 5
7 10

8 9



10/5/2022

2

Edge Classification (for DFS on directed 
graphs)
Edge type Definition When is (𝒖, 𝒗) that edge type?

Tree Edges forming the DFS tree (or forest). 𝑣 was not seen before we processed 𝑢, 𝑣 .

Forward From ancestor to descendant in tree. 𝑢 and 𝑣 have been seen, and
u.start < v.start < v.end < u.end

Back From descendant to ancestor in tree. 𝑢 and 𝑣 have been seen, and
v.start < u.start < u.end < v.end

Cross Edges going between vertices without an 
ancestor relationship.

𝑢 and 𝑣 have not been seen, and
v.start < v.end < u.start < u.end

The third column doesn’t look like it encompasses all possibilities.
It does – the fact that we’re using a stack limits the possibilities:

e.g. u.start < v.start < u.end < v.end is impossible.
And the rules of the algorithm eliminate some other possibilities. 

Try it Yourselves!

DFS(u)
Mark u as “seen”
u.start = counter++
For each edge (u,v) //leaving u

If v is not “seen”
DFS(v)

End If
End For
u.end = counter++

DFSWrapper(G)
counter = 0
For each vertex u of G

If u is not “seen”
DFS(u)

End If
End For A

D

C

EF

B

Type Definition When is (𝒖, 𝒗) that edge type?

Tree Edges forming the DFS tree (or 
forest).

𝑣 was not seen before we processed 𝑢, 𝑣 .

Forwar
d

From ancestor to descendant in 
tree.

𝑢 and 𝑣 have been seen, and
u.start < v.start < v.end < u.end

Back From descendant to ancestor in 
tree.

𝑢 and 𝑣 have been seen, and
v.start < u.start < u.end < v.end

Cross Edges going between vertices 
without an ancestor relationship.

𝑢 and 𝑣 have not been seen, and
v.start < v.end < u.start < u.end


