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Old Breadth-First Search Application

Shortest paths in an unweighted graph.

Finding the connected components of an undirected graph.

Both run in Θ(𝑚 + 𝑛) time, 

where 𝑚 is the number of edges (also written 𝐸 or |𝐸|)

And 𝑛 is the number of vertices (also written 𝑉 or |𝑉|)



Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What’s the shortest path from s to s? 
Well….we’re already there.

What’s the shortest path from s to u or v?
Just go on the edge from s

From s to w,x, or y?
Can’t get there directly from s, if we want a length 2 path, have to go through u or v.
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A new application

Called “2-colorable” because you can “color” 𝑉1 red and 𝑉2 blue, and no 
edge connects vertices of the same color.

We’ll adapt BFS to find if a graph is bipartite

And prove a graph theory result along the way.

A graph is bipartite (also called 2-colorable) if the vertex set can be divided 

into two sets 𝑉1, 𝑉2 such that every edge goes between 𝑉1 and 𝑉2.

Bipartite (also called “2-colorable”)



A new application

Called “2-colorable” because you can “color” 𝑉1 red and 𝑉2 blue, and no 
edge connects vertices of the same color.

A graph is bipartite (also called 2-colorable) if the vertex set can be divided 

into two sets 𝑉1, 𝑉2 such that the every edge goes between 𝑉1 and 𝑉2.

Bipartite (also called “2-colorable”)

If a graph contains an odd cycle, then it is not bipartite.

Try the example on the right, 

then proving the general 

theorem in the light purple 

box.

Help Robbie figure out how long to 

make the explanation

Pollev.com/robbie



Lemma 1

If a graph contains an odd cycle, then it is not bipartite.

Start from any vertex, and give it either 

color.

Its neighbors must be the other color.

Their neighbors must be the first color

…

The last two vertices (which are adjacent) 

must be the same color.

Uh-oh. 



BFS with Layers

Why did BFS find distances in unweighted graphs?

You started from 𝑢 (“layer 0”)

Then you visited the neighbors of 𝑢 (“layer 1”)

Then the neighbors of the neighbors of 𝑢, that weren’t already visited 
(“layer 2”)

...

The neighbors of layer 𝑖 − 1, that weren’t already visited (“layer 𝑖”)



BFS With Layers

It’s just BFS!

With some 
extra bells and 
whistles.

search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as seen

toVisit.enqueue(end-of-layer-marker)

l=1

while(toVisit is not empty) 

current = toVisit.dequeue()

if(current == end-of-layer-marker)

l++

toVisit.enqueue(end-of-layer-marker)

current.layer = l

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)



Layers

Can we have an edge that goes from layer 𝑖 to layer 𝑖 + 2 (or lower)?

No! If 𝑢 is in layer 𝑖, then we processed its edge while building layer 𝑖 +
1, so the neighbor is no lower than layer 𝑖.

Can you have an edge within a layer?

Yes! If 𝑢 and 𝑣 are neighbors and both have a neighbor in layer 𝑖, they 
both end up in layer 𝑖 + 1 (from their other neighbor) before the edge 
between them can be processed.



Testing Bipartiteness

How can we use BFS with layers to check if a graph is 2-colorable?

Well, neighbors have to be “the other color”

Where are your neighbors?

Hopefully in the next layer or previous layer…

Color all the odd layers red and even layers blue.

Does this work? 



Lemma 2

An “intra-layer” edge is an edge “within” a layer.

Follow the “predecessors” back up, layer by layer. 

Eventually we end up with the two vertices having the same 
predecessor in some level (when you hit layer 1, there’s only one vertex)

Since we had two vertices per layer until we found the common vertex, 
we have 2𝑘 + 1 vertices – that’s an odd number!

If BFS has an intra-layer edge, then the graph has an odd-

length cycle.



Lemma 3

Prove it by contrapositive

We want to show “if a graph is not bipartite, then it has an odd-length 
cycle.

Suppose 𝐺 is not bipartite. Then the coloring attempt by BFS-coloring 
must fail. 

Edges between layers can’t cause failure – there must be an intra-level 
edge causing failure. By Lemma 2, we have an odd cycle.

If a graph has no odd-length cycles, then it is bipartite.       



The Big Result

Proof:
Lemma 1 says if a graph has an odd cycle, then it’s not bipartite (or in 
contrapositive form, if a graph is bipartite, then it has no odd cycles)

Lemma 3 says if a graph has no odd cycles then it is bipartite.

A graph is bipartite if and only if it has no odd cycles.

Bipartite (also called “2-colorable”)

Lemma 1: If a graph contains an odd cycle, then it is not bipartite.

Lemma 3: If a graph has no odd-length cycles, then it is bipartite.       



The Big Result

The final theorem statement doesn’t know about the algorithm – we 
used the algorithm to prove a graph theory fact!



Wrapping it up
BipartiteCheck(graph) //assumes graph is connected! 

toVisit.enqueue(first vertex)

mark first vertex as seen

toVisit.enqueue(end-of-layer-marker)

l=1

while(toVisit is not empty) 

current = toVisit.dequeue()

if(current == end-of-layer-marker)

l++

toVisit.enqueue(end-of-layer-marker)

current.layer = l

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)

else //v is seen

if(v.layer == current.layer)

return “not bipartite” //intra-level edge

return “bipartite” //no intra-level edges



Testing Bipartiteness

Our algorithm should answer “yes” or “no”

“yes 𝐺 is bipartite” or “no 𝐺 isn’t bipartite”

Whenever this happens, you’ll have two parts to the proof:

If the right answer is yes, then the algorithm says yes.

If the right answer is no, then the algorithm says no.

OR 

If the right answer is yes, then the algorithm says yes.
If the algorithm says yes, then the right answer is yes.



Proving Algorithm Correct

If the graph is bipartite, then by Lemma 1 there is no odd cycle. So by 
the contrapositive of lemma 2, we get no intra-level edges when we run 
BFS, thus the algorithm (correctly) returns the graph is bipartite.

If the algorithm returns that the graph is bipartite, then we cannot have 
any intra-level edges (since we check every edge in the course of the 
algorithm). We proved earlier that there are no edges skipping more 
than one level. So if we assign odd levels to “red” and even levels to 
“blue” the algorithm has verified that there are no edges between 
vertices of the same color. So the graph is bipartite by definition.



DFS vs. BFS

In BFS, we explored a graph 
“level-wise”

We explored everything 
next to the starting vertex.

Then we explored 
everything one step further 
away.

Then everything one step 
further

…



DFS vs. BFS

In DFS, we explore deep 
into the graph.

We try to find new 
(undiscovered) nodes, then 
“backtrack” when we’re out 
of new ones.



DFS – pseudocode 

In 332, you took your BFS code, replaced the queue with a stack and 
said “that’s the pseudocode.”

That’s a really nice object lesson in stacks.

No one actually writes DFS that way (except in data structures courses). 

You’ll basically always see the recursive version instead. (using the call 
stack instead of a user-created stack data structure)



DFS – pseudocode

Instead of using an explicit stack, we’re going to use recursion 
The call stack is going to be our stack.

We want to explore as deeply as possible from each of our 
outgoing edges

DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For



DFS – pseudocode 

Both the explicit stack version and the recursive version “are” DFS.

For example, they can both traverse through the graph in the same 
fundamental way. You can use them for similar applications.

But they’re not identical – they actually use the stack in different ways. If 
you’re trying to convert from one to the other, you’ll have to think 
carefully to do it. 



Running DFS
DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

A

F

D

E

C

B

G

Start from A

Vertex: A

Last edge used: ---

Vertex: B

Last edge used: --

Vertex: C

Last edge used: --

Vertex: D

Last edge used: --

Vertex: B

Last edge used: (B,C)

Vertex: C

Last edge used: (C,D)

Vertex: D

Last edge used: (D,B)

Vertex: A

Last edge used: (A,B)

Vertex: A

Last edge used: (A,F)

Vertex: E

Last edge used: ---

Vertex: B

Last edge used: (B,E)

Vertex: E

Last edge used: (E,F)

Vertex: F

Last edge used: ---

Vertex: F

Last edge used: (F,D)



Running DFS

A

F

D

E

C

B

G

DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

HEY!

We missed something!

DFS(v) finds exactly the 

(unseen) vertices reachable 

from 𝑣.

DFS discovery



Reaching Everything

One possible use of DFS is visiting every vertex

How can we make sure that happens?
What did you do for BFS when you had this problem?

Add a while loop, and call DFS from each vertex. 

DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

DFSWrapper(G)

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For



Bells and Whistles
Depending on your application, you may add a few extra lines to 
the DFS code to compute the thing you want. 
Usually just an extra variable or two per vertex.

For today’s application, we need to know what order vertices come 
onto and off of the stack.

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++

DFSWrapper(G)

counter = 1

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For



Edge Classification

When we use DFS to search through a graph, we’ll have different “kinds” 

of edges.

Like when we did BFS, we had:

• Edges that went from level 𝑖 to level 𝑖 + 1
• Intra-level edges.

We’ll do a few examples to help classify the edges.

Then do an application of the classification.

Our goal: find a cycle in a directed graph. 



Running DFS

A

F

D

E

C

B

G

Start from A

Vertex: A

Last edge used: ---

Vertex: B

Last edge used: --

Vertex: C

Last edge used: --

Vertex: D

Last edge used: --

Vertex: B

Last edge used: (B,C)

Vertex: C

Last edge used: (C,D)

Vertex: D

Last edge used: (D,B)

Vertex: A

Last edge used: (A,B)

Vertex: A

Last edge used: (A,F)

Vertex: E

Last edge used: ---

Vertex: B

Last edge used: (B,E)

Vertex: E

Last edge used: (E,F)

Vertex: F

Last edge used: ---

Vertex: F

Last edge used: (F,D)

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++1 12

2 11

3 6
4 5

7 10

8 9



A

F

D

E

C

B

G

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++



The orange edges (the ones where we discovered a new 

vertex) form a tree!*

We call them tree edges.

That blue edge went from a descendent to an ancestor

B was still on the stack when we found (B,D). 

We call them back edges.

The green edge went from an ancestor to a descendant

F was put on and come off the stack between putting A on 

the stack and finding (A,F)

We call them forward edges.

The purple edge went…some other way.

D had been on and come off the stack before we found F 

or (F,D)

We call those cross edges.

*Conditions apply. Sometimes the graph is a forest. But we call 

them tree edges no matter what.

1 12

2 11

3 6

4 5

7 10

8 9



Edge Classification (for DFS on directed 
graphs)
Edge type Definition When is (𝒖, 𝒗) that edge type?

Tree Edges forming the DFS tree (or forest). 𝑣 was not seen before we processed 𝑢, 𝑣 .

Forward From ancestor to descendant in tree. 𝑢 and 𝑣 have been seen, and

u.start < v.start < v.end < u.end

Back From descendant to ancestor in tree. 𝑢 and 𝑣 have been seen, and

v.start < u.start < u.end < v.end

Cross Edges going between vertices without an 

ancestor relationship.

𝑢 and 𝑣 have not been seen, and

v.start < v.end < u.start < u.end

The third column doesn’t look like it encompasses all possibilities.

It does – the fact that we’re using a stack limits the possibilities:

e.g. u.start < v.start < u.end < v.end is impossible.

And the rules of the algorithm eliminate some other possibilities. 



Try it Yourselves!

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++

DFSWrapper(G)

counter = 0

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For

A

D

C

EF

B

1 12

2 11

3 10

4 5

6 9

7 8

cross



Actually Using DFS

Here’s a claim that will let us use DFS for something!

DFS run on a directed graph has a back edge if and only if 

it has a cycle.

Back Edge Characterization



Forward Direction

If DFS on a graph has a back edge then it has a cycle.

Suppose the back edge is (𝑢, 𝑣).

A back edge is going from a descendant to an ancestor.

So we can go from 𝑣 back to 𝑢 on the tree edges.  

That sounds like a cycle!



Backward direction

This direction is trickier.
Here’s a “proof” – it has the right intuition, but (at least) one bug.

Suppose G has a cycle 𝑣0, 𝑣1, … , 𝑣𝑘. 

Without loss of generality, let 𝑣0 be the first node on the cycle DFS marks 
as seen.

For each 𝑖 there is an edge from 𝑣𝑖 to 𝑣𝑖+1.

We discovered 𝑣0 first, so those will be tree edges.

When we get to 𝑣𝑘 , it has an edge to  𝑣0 but 𝑣0 is seen, so it must be a 
back edge.

Talk to your neighbors to find a bug –then try to fix it.



Fixing the Backward Direction

We might not just walk along the cycle in order. Are we going to visit 𝑣𝑘
“in time” or might 𝑣𝑘 , 𝑣0 be a cross edge?

DFS(v) finds exactly the 

(unseen) vertices reachable 

from 𝑣.

DFS discovery



Fixing the Backward Direction

We might not just walk along the cycle in order. Are we going to visit 𝑣𝑘
“in time” or might 𝑣𝑘 , 𝑣0 be a cross edge?

Suppose G has a cycle 𝑣0, 𝑣1, … , 𝑣𝑘. 

Without loss of generality, let 𝑣0 be the first node on the cycle DFS 
marks as seen.

For each 𝑖 there is an edge from 𝑣𝑖 to 𝑣𝑖+1.

We discovered 𝑣0 first, so those will be tree edges.

When we get to 𝑣𝑘 , it has an edge to  𝑣0 but 𝑣0 is seen, so it must be a 
back edge.

𝑣𝑘 is reachable from 𝑣0 so we must reach 𝑣𝑘 before 𝑣0 comes off the stack.



Summary

A directed graph has a back edge if and only if it has a 

cycle.

Back Edge Characterization

DFS(v) finds exactly the (unseen) vertices reachable from 𝑣.

DFS discovery



Edge Classification (for DFS on directed 
graphs)
Edge type Definition When is (𝒖, 𝒗) that edge type?

Tree Edges forming the DFS tree (or forest). 𝑣 was not seen before we processed 𝑢, 𝑣 .

Forward From ancestor to descendant in tree. 𝑢 and 𝑣 have been seen, and

u.start < v.start < v.end < u.end

Back From descendant to ancestor in tree. 𝑢 and 𝑣 have been seen, and

v.start < u.start < u.end < v.end

Cross Edges going between vertices without an 

ancestor relationship.

𝑢 and 𝑣 have not been seen, and

v.start < v.end < u.start < u.end

The third column doesn’t look like it encompasses all possibilities.

It does – the fact that we’re using a stack limits the possibilities:

e.g. u.start < v.start < u.end < v.end is impossible.

And the rules of the algorithm eliminate some other possibilities. 



BFS/DFS caveats and cautions

Edge classifications are different for directed graphs and undirected 
graphs.

DFS in undirected graphs don’t have cross edges.

BFS in directed graphs can have edges skipping levels (only as back 
edges, skipping levels up though!)



Your Takeaways

When searching through a graph, order matters! 

BFS and DFS do different things!

BFS/DFS algorithms usually keep track of extra information/calculate 
something at each vertex/use edge classification to solve the problem.
A few extra bells and whistles in the code, but usually little more.

DFS can solve a wide-variety of problems, but the algorithms tend to be 
subtle (example in section handout).

BFS a lot more intuitive, start there if you can.

BE CAREFUL with directed/undirected graphs. The algorithms aren’t 
always easy to convert.



Summary – Graph Search Applications

BFS

Shortest Paths (unweighted) 
graphs)

DFS

Cycle detection (directed graphs)

Topological sort

Strongly connected components

Cut edges (on homework)

EITHER

2-coloring

Connected components (undirected)

Usually use BFS –

easier to understand.


