Running Times, BFS | &

Proposer-Optimality

Some agents might have more than one possible match in a stable
matching.

We say that h is a feasible partner for r if there is at least one stable
matching where r and h are matched.

When there’'s more than one stable matching, there is a tremendous
benefit to being the proposing side.

Proposer-Optimality

Every member of the proposing side is matched to
their favorite of their feasible partners.

Proposer-Optimality
Intuition
This isn't a full proof (coming in a second)

Suppose r is not matched to their favorite
feasible partner, h. It has to be rejected by h
during the algorithm (otherwise r matched to h
or better). How did that happen? Well h had to
have a better offer. But what's the source of that
better offer? Call them r’.

There's some stable matching where (r, h) are
matched, and r’ is matched to some h'. For
stability h prefers r to r’ or r’ prefers h' to h.

Must be the second, so r' was also already
rejected by a feasible partner.

Proposer-Optimality

Every member of the proposing side is matched to
the favorite of their feasible partners.

Intuition: I I

The riders start at the top of their lists. For the claim to be false, some
rider r has to be the first to be rejected by their favorite feasible horse, h.

When that happens, h says it prefers some r' (and it does that while r' is
still in the “favorite feasible partner” or “too good for you” sections of

their list). So " and h would block any matching

Proposer-Optimality ﬂ\
Every member of the proposing side is matched to RN
the favorite of their feasible partners. \

N\
Let's prove it — again by contradiction I I

Suppose some rider is not matched to their favorite feasible partner. .
Then some r must have been the first to be rejected by their favorite feasible partner,

h. (Observation A) . . o
And there is an r’ that h (temporarily) matched to causing that rejection.

Since r and h are feasible for each other, there is some stable matching (call it M)
where (r, h) are matched. The rider r’ is matched to some horse h'.

What can we say about r'? They had never been rejected by a feasible partner. So
they prefer h to'h’.

And h prefers r’ to r (by the run of the algorithm).
But then (r’, h) are a blocking pair in M'!

Contradiction With Extremality

We used a trick to make the proof nicer.

Instead of saying “r’ was already rejected by a feasible partner, let's go
back and analyze that rejection.” And repeat the argument over and
over, we jump straight back to the first rejection.

If In your proofs, you're saying “repeat this step until..." you can
probably make a cleaner proof with this trick.

Another example of this trick is in section 1.

Implications of Proposer Optimality

Proposer-Optimality

Every member of the proposing side is matched to
their favorite of their feasible partners.

We didn't specify which rider proposes when more than one is free

Proposer-optimality says it doesn’t matter! You always get the proposer-optimal
matching.

So what happens to the other side?

Chooser-Pessimality

A similar argument (it's a quite tricky proof-by-contradiction, but very
similar to proposer-optimality), will show that choosing among
proposals is a much worse position to be in.

Chooser-Pessimality

Every member of the choosing (non-proposing) side is
matched to their least favorite of their feasible partners.

Some More Context and Takeaways

Stable Matching has another common name: “Stable Marriage”

The metaphor used there is “men” and “women” getting married.

When choosing or analyzing an algorithm, or choosing which parts of a
problem to model and which ones to ignore, think about everyone

involved, not just the people you're optimizing for; you might not be
able to have it all.

Takeaways

Stable Matchings always exist, and we can find them efficiently.

The GS Algorithm gives proposers their best possible partner
At the expense of those receiving proposals getting their worst possible.

When doing a proof by contradiction, it sometimes helps to analyze the
first time something happens instead of just some time where it
happens.

Where Are We?

Last Week:

A useful algorithm for matching up agents in two groups.
This Week:

Not a single algorithm — a method of designing your own algorithms.

How do we search through graphs?
You've already seen the basic tools — BFS and DFS

Don't just want to see what BFS/DFS can do, want you to be able to use them in
new scenarios.

Today

What running times are good?
Review some graph terms

BFS and applications

Running Times

Recall the definition of big-G,
big-Omega, big-Theta

Big-O is “at most” —it's a fancy
version of "<”

Big-Omega is “at least” —it's a
fancy version of "> "

Big-Theta is "about equal to" -
it's a fancy version of “="

Big-O
f(n) is 0(g(n)) if there exist positive
constants ¢, n, such that for all n > n,,

fm) <c-gn)

Big-Omega

f(n) is Q(g(n)) if there exist positive constants
c,ng such that for all n = n,,

f(m)=zc-gmn)

Big-Theta

f(n)is ©(g(n)) if
f(n)is 0(g(n)) and f(n) is Q(g(n)).

What don’'t we care about?

lgnore lower-order terms.
If there's a 5n? that's more important than 10n for very large n

lgnore constant factors.

We can't see clearly what will happen when we convert from
pseudocode to Java code (and Java code to machine code)

lgnore small inputs.
Small enough and it happens in the blink of an eye anyway...

Big-O isn't perfect!

f(n) = 1,000,000,000,000,000,000,000n is slower than g(n) = 2n* for
“practical” sizes of n. (but big-0, Q, © says treat f as faster)

f(n) =nand g(n) = 1000000n aren't the same for practical purposes.
But big-0, Q, 0 treat them identically.

Polynomial vs. Exponential

We'll say an algorithm is “efficient” if it runs in polynomial time

Polynomial Time

We say an algorithm runs in polynomial time if on an input of
size n, the algorithm runs in time 0(n°) for some constant c.

Sorting algorithms (e.g. the ®(nlogn) ones) — polynomial time.
Graph algorithms from 332 — polynomial time

Why Polynomial Time?

Most “in-practice efficient” algorithms are polynomial time, and most
polynomial time algorithms can be made “in-practice efficient.
Not all of them! But a good number.

It's an easy definition to state and check.

It's easy to work with (a polynomial time algorithm, run on the output of
a polynomial time algorithm is overall a polynomial time algorithm).

e.g. you can find a minimum spanning tree, then sort the edges. The overall
running time is polynomial.

It lets us focus on the big-issues.

Thinking carefully about data structures might get us from 0(n?) to 0(n?), or
0(2™n) to 0(2™), but we don't waste time doing the second one.

Polynomial vs. Exponential

If you have an algorithm that takes exactly f(n) microseconds, how
large of an n can you handle in the given time?

1second 1 minute 1 hour 1 day 1 month 1 year 1 century

lgn 910° o6-107 936-10° o864.10° 925920-10° 9315360-10° 931556736-10°
VT 102 36-10™ 1206-10' 746496 - 10'® 6718464 - 10'® 004510206 - 10'® 005827586073696 - 10'°
n 10° 6-107 36 - 10° 864 - 10° 2502 - 10° 31536 - 10° 31556736 - 10°
nlgn 62746 2801417 133378058 2755147513 T1870856404 707633803349 68654697441062
n? 1000 T745 60000 203938 16099685 5615602 56175382
n? 100 391 1532 4420 13736 31593 146677
an 19 25 31 36 41 44 51

n! 0 11 12 13 15 16 17

Polynomial vs. Exponential

For polynomial time, throwing (a lot) more time/compute power can
make a significant difference. For exponential (or worse) time, the

iImprovement is minimal.
With polynomial time, the increase in size is multiplicative..

For exponential time, it's only additive.

0(n) 106 106 - 2
0(n?) 100 100 - 21/3 =~ 126
0(2™) 19 19 +1 =20

Polynomial Time isn't perfect.

It has all the problems big-O had.

f(n) = nt%%0% is polynomial-time. g(n) = 1.0000000001™ is not. You'd
rather run a g(n) time algorithm.

Just like big-0, it's still useful, and we can handle the edge-cases as they
arise.

Tools for running time analysis

Recurrences
Solved with Master Theorem, tree method, or unrolling

Facts from 332
Known running times of data structures from that course— just use those as facts.
We have a reference for you on the webpage

Style of analysis you did in 332
How many iterations do loops need, and what's the running time of each?
Occasionally, summations to answer those questions.

https://courses.cs.washington.edu/courses/cse417/21au/resources/373blackboxes.html

Be Careful with hash tables

In-practice hash tables are amazing -- 0(1) for every dictionary
operation.

But what about in-theory? In the worst-case 0(n) operations are
possible.

Only use a dictionary if you can be sure you'll have 0(1) operations.

Usually the way we accomplish that is by assuming our input comes to
us numbered.

E.g. our riders and horses were numbered 0 ton — 1.
And for graphs are vertices are numbered 0 ton — 1.

‘ Graphs

332 review

Graphs

Represent data points and the relationships between them.

Formally: G H
A graph is a pair: G = (V,E) a

V: set of vertices (aka nodes) (4, B, C, D}

That's vague.

Csetofeages - {(4,B),(B,C),(B,D),(C,D)}
Each edge is a pair of vertices.

Graph Terms

This graph is

Graphs can be directed or undirected. disconnected.
Degree: 2

Following on twitter.

Outdegree: 2

Robbie

Degree: O

Indegree: 2 Friendships on Facebook.

Making Graphs

If your problem has data and relationships, you might want to represent
it as a graph

How do you choose a representation?

Usually:

Think about what your “fundamental” objects are
Those become your vertices.

Then think about how they're related
Those become your edges.

Adjacency Matrix Q

In an adjacency matrix a[u][v] is 1 if @
there is an edge (u,v), and O otherwise. 0

Worst-case Time Complexity

(IVI =n, [E] = m):
Add Edge: ©(1)

Remove Edge: (1)

Check edge exists from (u,v): @ (1)
Get outneighbors of u: Q(n)

Get inneighbors of u: O(n)

ol hNW|IDI—=|O
OO0/ 0O|= =0

O|0O|O|= OO |=—

O|0O|O|= | OO |=—

O|—-10|O0O|=|=10

O|—- 10|00 |0 |O

O|0O|=|= 10|00

OO0/l O0O|0O0 |0 |O

Space Complexity: 0(n®)

Adjacency List G- G
ZRe

@

An array where the u™ element contains a list of
neighbors of u.

Directed graphs: list of out-neighbors (a[u] has v for all 0| > 12
(u,v) in E) 1| > 03
Time Complexity (|V| =n, |E| = m): 2| &> 03
AddEd . @1 3| > 1525
ge. () 4 o> 5
Remove Edge: ©(1) s> 3, 4
Check edge exists from (u,v): O(1) 6| o>

Get neighbors of u (out): O(deg(¥)) Accume we have hash
Get neighbors of u (in): @(n) tables AND linked lists

Space Complexity: O(n + m)

Tradeoffs

Adjacency Matrices take more space, and have slower () bounds, why
would you use them?

For dense graphs (where m is close to n?), the running times will be close

And the constant factors can be much better for matrices than for lists.

Sometimes the matrix itself is useful (“spectral graph theory”)

For this class, unless we say otherwise, we'll assume we're using
Adjacency Lists and the following operations are all ©(1)
Checking if an edge exists.

Getting the next edge leaving u (when iterating over them all)

“following” an edge (getting access to the other vertex)

To make this work, we usually assume the vertices are numbered.

Graph Algorithms

From 332 you already know:

How to find a topological sort

Use Dijkstra’s Algorithm to find shortest paths in (positively) weighted graphs
Use Prim’s and Kruskal's Algorithms to find minimum spanning trees.

Depending on which quarter you took 332, you also know:
BFS, and at least one application.
That might have been 2-coloring, unweighted shortest paths, or something else.

DFS, and at least one application.
That might have been finding SCCs, a different topo sort algorithm, or something
else.

Our goal is not to memorize algorithms! Our goal is to solve new problems. Even if
you've seen these applications, we're coming from a new angle this week.

‘ Traversals

Breadth First Search

search (graph)
toVisit.enqueue (first vertex)
mark first vertex as seen
while (toVisit 1s not empty)
current = toVisit.dequeue ()
for (v : current.neighbors())
1f (v 1s not seen)
mark v as seen
toVisit.enqueue (V)

Current node: | ,

Queue: B pECF GHI
Finished'A B D E CF CH |

Breadth First Search

search (graph)
toVisit.enqueue (first vertex)

mark first vertex as seen O @
while (toVisit 1s not empty)
current = toVisit.dequeue () C O
for (v : current.neighbors()) O @
1f (v 1s not seen) (:

mark v as seen O
toVisit.enqueue (V) O

Hey we missed something...
We're only going to find vertices we can “reach” from our starting point.

If you need to visit everything, just start BFS again somewhere you haven't visited until
you've found everything.

Running Time

search (graph) This code might look like:

toVisit.enqueue (first vertex) a Iqop that goes around m times |
mark first vertex as seen Inside a loop that goes around n times,
. L . So you might say 0(mn).
while (toVisit 1s not empty)
current = toVisit.dequeue () That bound is not tight, |
for (v : current.neighbors()) Don't think about the loops, think about

. . what happens overall.
1f (v 1s not seen) How many times is current changed?

mark v as seen How many times does an edge get used
L] [] 1 . f>
toVisit.enqueue (v) to define current .neighbors=

We visit each vertex at most twice, and each edge at most once: ©(|V| + |E])

Old Breadth-First Search Application

Shortest paths in an unweighted graph.
Finding the connected components of an undirected graph.

Both run in ®(m + n) time,
where m is the number of edges (also written E or |E|)
And n is the number of vertices (also written V or [V])

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What's the shortest path from s to s?
Well....we're already there.

What's the shortest path from s to u or v?
Just go on the edge from s

From s to w,x, or y?
Can't get there directly from s, if we want a length 2 path, have to go through u or v.

CSE 37319 SU - ROB#E WEBER

A detailed application

Bipartite (also called “2-colorable”)

A graph is bipartite (also called 2-colorable) if the vertex set can be divided
into two sets V;, V, such that the only edges go between V; and V.

Called “2-colorable” because you can “color” V; red and V, blue, and no
edge connects vertices of the same color.

We'll adapt BFS to find if a graph is bipartite
And prove a graph theory result along the way.

A detailed application

Bipartite (also called “2-colorable”)

A graph is bipartite (also called 2-colorable) if the vertex set can be divided
into two sets V;, V, such that the only edges go between V; and V.

Called “2-colorable” because you can “color” V; red and V, blue, and no
edge connects vertices of the same color.

If a graph contains an odd cycle, then it is not bipartite.

Try the example on the right,
then proving the general Help Robbie figure out how long to

theorem in the light purple make the explanation
box. Pollev.com /robbie

Lemma 1

If a graph contains an odd cycle, then it is not bipartite.

Start from any vertex, and give it either
color.

Its neighbors must be the other color.
Their neighbors must be the first color

The last two vertices (which are adjacent)
must be the same color.
Uh-oh.

BFS with Layers

Why did BFS find distances in unweighted graphs?

You started from u (“layer 07)
Then you visited the neighbors of u (“layer 1%)

Then the neighbors of the neighbors of u, that weren't already visited
("layer 2)

The neighbors of layer i — 1, that weren't already visited (“layer i”)

Unweighted Graphs

If the graph is unweighted, how do we find a shortest paths?

What's the shortest path from s to s?
Well....we're already there.

What's the shortest path from s to u or v?
Just go on the edge from s

From s to w,x, or y?
Can't get there directly from s, if we want a length 2 path, have to go through u or v.

CSE 37319 SU - ROBB{E WEBER

BFS With Layers

search (graph)
toVisit.enqueue (first vertex) HSJUStBFS!
mark first vertex as seen ,
toVisit.enqueue (end-of-layer-marker) With some
121 extra bells and
while (toVisit 1s not empty) whistles.
current = toVisit.dequeue ()
1f (current == end-of-layer-marker)
1++
toVisit.enqueue (end-of-layer-marker)
current.layer = 1
for (v : current.neighbors{())
if (v 1s not seen)
mark v as seen
toVisit.enqueue (V)

Layers

Can we have an edge that goes from layer i to layer i 4+ 2 (or lower)?

No! If u is in layer i, then we processed its edge while building layer i +
1, so the neighbor is no lower than layer i.

Can you have an edge within a layer?

Yes! If u and v are neighbors and both have a neighbor in layer i, they

both end up in layer i + 1 (from their other neighbor) before the edge
between them can be processed.

Testing Bipartiteness

How can we use BFS with layers to check if a graph is 2-colorable?

Well, neighbors have to be “the other color”
Where are your neighbors?

Hopefully in the next layer or previous layer...
Color all the odd layers red and even layers blue.

Does this work?

Lemma 2

If BFS has an intra-layer edge, then the graph has an odd-

length cycle.

An “intra-layer” edge is an edge “within” a layer.

Follow the “predecessors” back up, layer by layer.

Eventually we end up with the two vertices having the same
predecessor in some level (when you hit layer 1, there’s only one vertex)

Since we had two vertices per layer until we found the common vertex,
we have 2k + 1 vertices — that's an odd number!

Lemma 3

If a graph has no odd-length cycles, then it is bipartite.

Lemma 3

If a graph has no odd-length cycles, then it is bipartite.

Prove it by contrapositive

We want to show “if a graph is not bipartite, then it has an odd-length
cycle.

Suppose G is not bipartite. Then the coloring attempt by BFS-coloring
must fail.

Edges between layers can't cause failure — there must be an intra-level
edge causing failure. By Lemma 2, we have an odd cycle.

The big result

Bipartite (also called “2-colorable”)

A graph is bipartite if and only if it has no odd cycles.

Proof:
Lemma 1 says if a graph has an odd cycle, then it's not bipartite (or in
contrapositive form, if a graph is bipartite, then it has no odd cycles)

Lemma 3 says if a graph has no odd cycles then it is bipartite.

The Big Result

The final theorem statement doesn’'t know about the algorithm — we
used the algorithm to prove a graph theory fact!

Wrapping 1t up
BipartiteCheck (graph) //assumes graph is connected!
toVisit.enqueue (first vertex)
mark first vertex as seen
toVisit.enqueue (end-of-layer-marker)
1="odd”
while (toVisit 1s not empty)
current = toVisit.dequeue ()
1f (current == end-of-layer-marker)
1++
toVisit.enqueue (end-of-layer-marker)
current.layer = 1
for (v : current.neighbors())
1f (v 1s not seen)
mark v as seen
toVisit.enqueue (v)
else //v is seen
1if(v.layer == current.layer)
return “not bipartite” //intra-level edge
return “bipartite” //no intra-level edges

Testing Bipartiteness

Our algorithm should answer “yes” or “no”
"yes G is bipartite” or “no G isn't bipartite”
We need to show an if-and-only-if

"Our algorithm outputs true if and only if G is bipartite”
There are two implications to prove!

If we output true then G really is bipartite.

It G Is bipartite then our algorithm outputs true.

Proving Algorithm Correct

If the graph is bipartite, then by Lemma 1 there is no odd cycle. So by
the contrapositive of lemma 2, we get no intra-level edges when we run
BFS, thus the algorithm (correctly) returns the graph is bipartite.

It the algorithm returns that the graph is bipartite, then we have found a
bipartition. We cannot have any intra-level edges (since we check every
edge in the course of the algorithm). We proved earlier that there are
no edges skipping more than one level. So if we assign odd levels to
“red” and even levels to “blue” the algorithm has verified that there are
no edges between vertices of the same color.

