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Where Were We?

Last time:
Introduced what a stable matching is

Today:
How do we find a stable matching?



Stable Matching, More Formally
Perfect matching:

•Each rider is paired with exactly one horse.

•Each horse is paired with exactly one rider.

Stability: no ability to exchange

an unmatched pair 𝑟-ℎ is blocking if they both prefer each other to 
current matches.

Stable matching: perfect matching with no blocking pairs.

Given: the preference lists of 𝑛 riders and 𝑛 horses. 
Find: a stable matching.

Stable Matching Problem



Questions

Does a stable matching always exist?

Can we find a stable matching efficiently?

We’ll answer both of those questions in the next few lectures.

Let’s start with the second one.



Idea for an Algorithm

Key idea

Unmatched riders “propose” to the highest horse on their 
preference list that they have not already proposed to.

Send in a rider to walk up to their favorite horse.

Everyone in front of a different horse? Done!

If more than one rider is at the same horse, let the horse 
decide its favorite.

Rejected riders go back outside.

Repeat until you have a perfect matching.



Gale-Shapley Algorithm

Initially all 𝑟 in 𝑅 and ℎ in 𝐻 are free

while there is a free 𝑟
Let ℎ be highest on 𝑟s list that 𝑟 has not proposed to

if ℎ is free 

match (𝑟, ℎ)
else //ℎ is not free

Let 𝑟′ be the current match of ℎ.
if ℎ prefers 𝑟 to r′

unmatch (𝑟’, ℎ)
match (𝑟, ℎ)



Algorithm Example

ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2, ℎ3 𝑟2 , 𝑟3, 𝑟1

ℎ1 , ℎ3, ℎ2 𝑟3 , 𝑟1, 𝑟2

ℎ3𝑟3ℎ1 , ℎ2, ℎ3 𝑟3 , 𝑟1, 𝑟2

Proposals: 𝑟1, 𝑟2, 𝑟1, 𝑟3, 𝑟3, 𝑟1



Does this algorithm work?

Does it run in a reasonable amount of time?

Is the result correct (i.e. a stable matching)?

Begin by identifying invariants and measures of progress

Observation A: r’s proposals get worse for them.

Observation B: Once h is matched, h stays matched.

Observation C: h’s partners get better.

How do we justify these? A one-sentence explanation would suffice for each of these on 

the homework.

How did we know these were the right observations? Practice. And editing – we 

wouldn’t have found these the first time, but after reading through early proof attempts.



Does this algorithm work?

Want to show two things:

1. The code produces the right output (i.e., you get a stable matching)

2. The code runs in a reasonable amount of time. 

We’ll start with question 2.



Claim 1: If 𝑟 proposed to the last horse on 
their list, then all the horses are matched.



Claim 1: If 𝑟 proposed to the last horse on 
their list, then all the horses are matched.

Hint: 𝑟 must have been rejected a lot – what does that mean?

Try to prove this claim, i.e. clearly explain why it is true. You might want some of 

these observations:

Observation A: 𝑟’s proposals get worse (for 𝑟).

Observation B: Once ℎ is matched, ℎ never becomes free again.

Observation C: ℎ’s partners cannot get worse (for ℎ).



Claim 1: If 𝑟 proposed to the last horse on 
their list, then all the horses are matched.

Hint: 𝑟 must have been rejected a lot – what does that mean?

Since we immediately match any horse we un-match in the algorithm, 
once a horse receives any proposal it is not free for the rest of the 
algorithm. (Observation B).

Since 𝑟 proposes to horses on its list in order, every horse on 𝑟’s list 
must be matched.

And every horse is on 𝑟’s list! So once a rider proposes to the last horse 
on their list, all horses are matched.



Claim 2: The algorithm stops after 𝑂 𝑛2

iterations.

Hint: When do we exit the loop? (Use claim 1).

If every horse is matched, every rider must be matched too.
-Because each horse is matched to exactly one rider and there are 
an equal number of riders and horses.

Since we don’t repeat a proposal, and each of the 𝑛 riders 
have lists of length 𝑛, It takes at most 𝑂 𝑛2 proposals to get 
to the end of some rider’s list.
Claim 2 now follows from Claim 1.

That’s the number of iterations. What about time per iteration?



Wrapping up the running time

We need 𝑂(𝑛2) proposals. But how many steps does the full algorithm 
execute?

Depends on how we implement it…we’re going to need some data 
structures.

With the right data structures the running time really is 𝑂(𝑛2). More 
details in the optional slides at the end of Lecture 1’s slides.



Claim 3: The algorithm identifies a perfect 
matching.

Why?

We know the algorithm halts. Which means when it halts every rider is 
matched.

But we have the same number of horses and riders, and we matched 
them one-to-one. 

Hence, the algorithm finds a perfect matching.



Claim 4: The matching has no blocking pairs.

We want to prove a negative

there is no blocking pair.

That’s a good sign for proof by contradiction.



Claim 4: The matching has no blocking pairs.

We want to prove a negative

there is no blocking pair.

That’s a good sign for proof by contradiction.

Suppose (for contradiction) that (𝑟1, ℎ1) and (𝑟2, ℎ2) are matched, 
but 

𝑟1prefers ℎ2 to ℎ1 and

ℎ2 prefers 𝑟1 to 𝑟2
ℎ1𝑟1

𝑟2 ℎ2

…ℎ2 …ℎ1…

…𝑟1 … 𝑟2…



Claim 4: The matching has no blocking pairs.

How did 𝑟1 end up matched to ℎ1?

ℎ1𝑟1

𝑟2 ℎ2

…ℎ2 …ℎ1…

…𝑟1 … 𝑟2…



Claim 4: The matching has no blocking pairs.

How did 𝑟1 end up matched to ℎ1?

They must have proposed to and been rejected by ℎ2 (since riders 
propose down their list in order – Observation A).

Why did ℎ2 reject 𝑟1? It got a better offer from some rider, r′.

If ℎ2 ever changed matches after that, the match was only better for it, 
(since horse’s partners can only get better for them -- Observation C) 
so it must prefer 𝑟2 (its final match) to 𝑟1.

But 𝑟1 is before 𝑟2 on ℎ2’s list. That’s a contradiction!

ℎ1𝑟1

𝑟2 ℎ2

…ℎ2 …ℎ1…

…𝑟1 … 𝑟2…



Result

Simple, 𝑂(𝑛2) algorithm to compute a stable matching

Corollary

A stable matching always exists.

The corollary isn’t obvious!

The “stable roommates problem” doesn’t always have a solution:
2𝑛 people, rank the other 2𝑛 − 1

Goal is to pair them without any blocking pairs.  



Multiple Stable Matchings

Suppose we take our algorithm and let the horses do the 
“proposing” instead.

ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2 𝑟2 , 𝑟1

ℎ2 , ℎ1 𝑟1 , 𝑟2



Multiple Stable Matchings

Suppose we take our algorithm and let the horses do the 
“proposing” instead.

We got a different answer…

What does that mean?

ℎ1𝑟1

𝑟2 ℎ2

ℎ1 , ℎ2 𝑟2 , 𝑟1

ℎ2 , ℎ1 𝑟1 , 𝑟2



Proposer-Optimality

Some agents might have more than one possible match in a stable 
matching. 

We say that ℎ is a feasible partner for 𝑟 if there is at least one stable 
matching where 𝑟 and ℎ are matched.

When there’s more than one stable matching, there is a tremendous 
benefit to being the proposing side.

Every member of the proposing side is matched to 
their favorite of their feasible partners.

Proposer-Optimality



Proposer-Optimality
Intuition

This isn’t a full proof (coming in a second)

Suppose 𝑟 is not matched to their favorite 
feasible partner, ℎ. It has to be rejected by ℎ
during the algorithm (otherwise 𝑟 matched to ℎ
or better). How did that happen? Well ℎ had to 
have a better offer. But what’s the source of that 
better offer? Call them 𝑟′.

There’s some stable matching where (𝑟, ℎ) are 
matched, and 𝑟′ is matched to some ℎ′. For 
stability ℎ prefers 𝑟 to 𝑟′ or 𝑟′ prefers ℎ′ to ℎ.

Must be the second, so 𝑟′ was also already 
rejected by a feasible partner.

ℎ′𝑟

𝑟′ ℎ

ℎ′𝑟

𝑟′ ℎ



Proposer-Optimality

Intuition:

The riders start at the top of their lists. For the claim to be false, some 
rider 𝑟 has to be the first to be rejected by their favorite feasible horse, ℎ.

When that happens, ℎ says it prefers some 𝑟′ (and it does that while 𝑟′ is 
still in the “favorite feasible partner” or “too good for you” sections of 
their list). So 𝑟′ and ℎ would block any matching 

Every member of the proposing side is matched to 
the favorite of their feasible partners.

Proposer-Optimality ℎ′𝑟

𝑟′ ℎ

ℎ′𝑟

𝑟′ ℎ



Proposer-Optimality

Let’s prove it – again by contradiction

Suppose some rider is not matched to their favorite feasible partner.
Then some 𝑟 must have been the first to be rejected by their favorite feasible partner, 
ℎ. (Observation A)
And there is an 𝑟′ that ℎ (temporarily) matched to causing that rejection.

Since 𝑟 and ℎ are feasible for each other, there is some stable matching (call it 𝑀′) 
where 𝑟, ℎ are matched. The rider 𝑟′ is matched to some horse ℎ′. 

What can we say about 𝑟′? They had never been rejected by a feasible partner. So 
they prefer ℎ to ℎ′. 

And ℎ prefers 𝑟′ to 𝑟 (by the run of the algorithm). 

But then (𝑟′, ℎ) are a blocking pair in 𝑀′!

Every member of the proposing side is matched to 
the favorite of their feasible partners.

Proposer-Optimality ℎ′𝑟

𝑟′ ℎ

ℎ′𝑟

𝑟′ ℎ



Contradiction With Extremality

We used a trick to make the proof nicer.

Instead of saying “𝑟′ was already rejected by a feasible partner, let’s go 
back and analyze that rejection.” And repeat the argument over and 
over, we jump straight back to the first rejection.

If in your proofs, you’re saying “repeat this step until…” you can 
probably make a cleaner proof with this trick.

Another example of this trick is in section 1.



Implications of Proposer Optimality

We didn’t specify in our pseudocode which rider proposes when more 
than one is free
Proposer-optimality says it doesn’t matter! You always get the proposer-optimal 
matching.

So what happens to the other side?

Every member of the proposing side is matched to 
their favorite of their feasible partners.

Proposer-Optimality



Chooser-Pessimality

A similar argument (it’s a quite tricky proof-by-contradiction, but very 
similar to proposer-optimality), will show that choosing among 
proposals is a much worse position to be in.

Every member of the choosing (non-proposing) side is 
matched to their least favorite of their feasible partners.

Chooser-Pessimality



Some More Context and Takeaways

Stable Matching has another common name: “Stable Marriage”

The metaphor used there is “men” and “women” getting married.

When choosing or analyzing an algorithm, or choosing which parts of a 
problem to model and which ones to ignore, think about everyone 
involved, not just the people you’re optimizing for; you might not be 
able to have it all.



Takeaways

Stable Matchings always exist, and we can find them efficiently.

The GS Algorithm gives proposers their best possible partner
At the expense of those receiving proposals getting their worst possible.

When doing a proof by contradiction, it sometimes helps to analyze the 
first time something happens instead of just some time where it 
happens.


