Stable Matching, More Formally

Perfect matching:

- •Each rider is paired with exactly one horse.
- •Each horse is paired with exactly one rider.

Stability: no ability to exchange

an unmatched pair r-h is blocking if they both prefer each other to current matches.

Stable matching: perfect matching with no blocking pairs.

Stable Matching Problem

Given: the preference lists of n riders and n horses. **Find:** a stable matching.

Try it!

Why are these not stable matchings?

$$h_1$$
, h_2 r_1 r_1 , r_2 r_1 , r_2 r_1 , r_2 r_1 r_2

$$h_1$$
, h_2 r_2 r_1 , r_2 r_1 , r_2 r_2 r_1 , r_2

Find a stable matching for this instance.

$$h_1, h_2, h_3$$
 r_1 r_1, r_2, r_3

$$h_2$$
, h_1 , h_3 r_2 r_1 , r_2 , r_3

$$h_1, h_2, h_3$$
 r_3 r_1, r_2, r_3