Stable Matching, More Formally ## Perfect matching: - •Each rider is paired with exactly one horse. - •Each horse is paired with exactly one rider. Stability: no ability to exchange an unmatched pair r-h is blocking if they both prefer each other to current matches. Stable matching: perfect matching with no blocking pairs. ## **Stable Matching Problem** **Given:** the preference lists of n riders and n horses. **Find:** a stable matching. ## Try it! Why are these not stable matchings? $$h_1$$, h_2 r_1 r_1 , r_2 r_1 , r_2 r_1 , r_2 r_1 r_2 $$h_1$$, h_2 r_2 r_1 , r_2 r_1 , r_2 r_2 r_1 , r_2 Find a stable matching for this instance. $$h_1, h_2, h_3$$ r_1 r_1, r_2, r_3 $$h_2$$, h_1 , h_3 r_2 r_1 , r_2 , r_3 $$h_1, h_2, h_3$$ r_3 r_1, r_2, r_3