
CSE 421 : Sample Final Exam Solutions

Name: @uw.edu NetID: @uw.edu

Instructions

• This Sample Final was assembled from problems given in previous 421 exams.

• The exam here is approximately the length of an 110 minute exam. Yours may be slightly longer or shorter.

• You are permitted one piece of 8.5x11 inch paper with handwritten notes (notes are allowed on both sides of
the paper).

• You may not use a calculator or any other electronic devices during the exam.

Advice

• Move around the exam; if you get stuck on a problem, save it until the end.

• Proofs are not required unless otherwise stated.

• Remember to take deep breaths.

Question Max points

True or False 0
Interval Scheduling 0
Group Test 0
Number of Paths in a DAG 0
Vertex Cut 0
Number Partition 0

Total ???

1

1. True or False

For each of the following problems, circle True or False. You do not need to justify your answer.

(a) If f and g are two different flows on the same flow graph (G, s, t) and if v(f) ≥ v(g) then every edge e in G
has f(e) ≥ g(e). True False Solution:

False

(b) If f is a maximum flow on a flow graph (G = (V,E), s, t) and B is the set of vertices in V that can reach t in
the residual graph Gf then (V − B,B) is a minimum capacity s− t cut in G. True False Solution:

True

(c) If f is a maximum flow on a flow graph G, s, t) and (S, T) is a minimum capacity s − t cut in G then every
edge e having endpoints on different sides of (S, T) has f(e) equal to the capacity of e. True False
Solution:

False

(d) If problem B is NP -hard and A ≤P B then A is NP -hard. True False Solution:

False

(e) If problem A is NP -hard and A ≤P B then B is NP -hard. True False Solution:

True

(f) If P 6= NP then every problem in NP requires exponential time. True False Solution:

False

(g) If problem A is in P then A ≤P B for every problem B in NP . True False Solution:

True

(h) If G is a weighted graph with n vertices and m edges that does not contain a negative-weight cycle, then the
iteration of the Bellman-Ford algorithm will reach a fixed point in at most n− 1 rounds. True False
Solution:

True

(i) If G is a weighted graph with n vertices andm edges that does contain a negative-weight cycle, then for every
vertex v in G, the shortest path from v to t in G containing n edges is strictly shorter than the shortest path
from v to t in G containing n− 1edges. True False Solution:

2

False

3

2. Interval Scheduling

The two processor interval scheduling problem takes as input a sequence of request intervals (s1, f1), ..., (sn, fn) just
like the unweighted interval scheduling problem except that it produces two disjoint sets A1, A2 ⊂ [n] such that all
requests in A1 are compatible with each other and all requests in A2 are compatible with each other and |A1 ∪A2|
is as large as possible. (A1 might contain requests that are incompatible with requests in A2). Does the following
greedy algorithm produce optimal results? If yes, argue why it does; if no, produce a counter example.

Sort requests by increasing finish time
A1 = ∅
A2 = ∅
while there is any request (si, fi) compatible with either A1 or A2 do:

Add the first unused request, if any, compatible with A1 to A1.
Add the first unused request, if any, compatible with A2 to A2.

end while

Solution:

Greedy is not optimal in this case. Consider the following example: (1,2), (3,4), (1,5). These jobs are sorted
by increasing finish time. The optimum solution sends (1,2), (3,4) to the first machine and (1,5) to the second
machine so it schedules all jobs.

The above Greedy algorithm first allocates (1,2) to A1, then it allocates (3,4) to A2. Then it cannot allocate
(1,5) to either of the machines.

4

3. Group Test

You are given a subsequence of n bits x1, ..., xn ∈ {0, 1}. Your output is to be either

• any i such that xi = 1 or

• the value 0 if the input is all 0’s

The only operation you are allowed to use to access the inputs is a function Group-Test where

Group-Test(i, j) =

{
1 if some bits xi, ..., xj has value 1
0 if all bits xi, ..., xj have value 0

(a) Design a divide and conquer algorithm to solve the problem that uses only O(logn) calls to Group-Test in the
worst case. Your algorithm should never access the xi directly. Solution:

i = 1, j = n

while i < j do:
mid = b i+j

2 c
if Group-Test(i,mid) == 1 then:

j = mid
else

i = mid+ 1
return i ∗ Group-Test(i, i)

(b) Briefly justify your bound on the number of calls. Solution:

Correctness: Given an interval {i, i+ 1, ..., j} we partition it into two (almost) equal size intervals where
the first interval is {i, ..., b(i+ j)/2c}. Then we test if there is a 1 bit in the first interval using the Group-
Test(i, b(i + j)/2c}); if the answer is 1 then we can recursively solve the problem on the first interval.
Otherwise, if Group-Test(i, b(i+ j)/2c}) = 0 there is no solution in the first interval. So, either there is a
solution in the second interval or there is no solution in the second interval. In either case, we can reduce
the problem to the second interval.

Runtime: The length of the interval decreases by a factor of 2 each time. So, we are only going to call
Group-Test at most O(logn) many times.

5

4. Number of Paths in a DAG

You are given a directed acyclic graph G = (V,E) and a node t ∈ V . Design a linear time algorithm to compute
for each vertex v ∈ V , the number of different paths from v to t in G. Analyze its running time in terms of n = |V |
and m = |E|.

(a) Give the optimization formula for computing the number of paths from i to t Solution:

OPT (i) =


0 if i > t

1 i = t∑
j:(i,j)∈E OPT (j) otherwise

(b) Give pseudocode for the (iterative) dynamic program for computing the number of different paths from v to
t in G for every vertex v ∈ V . Solution:

Find a topological sorting of G and rename vertices such that i < j for all (i, j) ∈ E

for i = t+ 1 → n do
M [i] = 0

M [t] = 1
for i = t− 1 → 1 do

M [i] = 0
for each edge (i, j) ∈ E do

M [i] = M [i] +M [j]

(c) Give the running time of your algorithm. Solution:

For i ≥ t, we compute M [i] in O(1) steps. Therefore the algorithm runs in O(n+m) in the worst case.

6

5. Vertex Cut

LetG = (V,E) be a directed graph with distinguished vertices s and t. Describe an algorithm to compute a minimum
sized set of vertices to remove to separate s and t. Your algorithm should identify the actual vertices to remove (and
not just determine the minimum number of vertices that could be removed).

Solution:

We build a flow graph and then use the minimum cut in the graph to determine the set of vertices to remove.
We then split each vertex v, other than s or t into vertices vin and vout with a unite capacity edge from vin to
vout. The vertex s is replaced by sout and t is replaced by tin. The edge (u, v) is replaced by an edge (uout, vin)
with infinite capacity.

We compute a maximum flow between sout and tin. Let S be the set of vertices reachable from sout in the
residual graph by paths of positive capacity. We say that a vertex v is a cut vertex if vin is in S, but vout is not
in S. The cut vertices are a minimum set of vertices to remove to separate the graph.

7

6. Number Partition

The Number Partition problem asks, given a collection of non-negative integers y1, ..., yn whether or not it is
possible to partition these numbers into two groups so that the sum in each group is the same. Prove that Number
Partition is NP-complete by solving the following problems.

(a) Show that Number Partition is in NP. Solution:

Given a partition of y1, ..., yn into two groups the verifier sums up the numbers in each group and outputs
yes if the two sums are equal and no otherwise. The verifier obviously runs in time polynomial in n and
logy1, ...,logyn because we can add up any two integers a, b in time O(loga + log b).

(b) Show that Subset Sum ≤P Number Partition.
Recall that in the Subset Sum problem, we are given a collection of integers (which can be positive and
negative), we want to see if it is possible to find a subset that sums up to 1.
Hint: Given an input to Subset Sum include two large numbers whose size differs by S − 2 where S is the
sum of all input numbers. Solution:

Given an input x = {x1, ..., xn} to the Subset Sum problem. Let S = x1 + ... + xn. Add two numbers
y = 10S and z = 11S − 2. Now, we give f(x) = {x1, ..., xn, y, z} as an input to the Number Partition
problem. Now, we prove the x is a yes answer to Subset Sum if and only if f(x) is a yes answer to Number
Partition.

Forward Direction: If x is a yes instance of Subset Sum than f(x) is a yes answer of Number Partition.
Since x is a yes answer of Subset Sum, there exists a set A ⊆ {x1, ..., xn} such that

∑
xi∈A xi = 1. Then

we claim {z ∪A, y ∪ ({x1, ..., xn} −A)} is a yes instance of Number Partition. It is enough to see

z +
∑
xi∈A

xi = z + 1 = 11S − 1 = 10S + (S − 1) = y +
∑
x 6∈A

xi

where the last identity uses that x1 + ...+ xn = S and
∑

xi∈A xi = 1.

Backwards Direction: If f(x) is a yes instance of Number Partition, the n x is a yes instance of Subset
Sum.

Since f(x) is a yes instance of Number Partition, there exists a partition A,B of {x1, ..., xn, y, z} such that
the numbers in A,B sum up to the same amount. Since x1 + ... + xn + y + z = 22S − 2, the numbers in
A must sum up to 11S − 1 and similarly numbers in B must sum up to 11S − 1. Therefore, y belongs to
one of A,B, and z to the other one. Without loss of generality, suppose z ∈ A and let C = A−{z}. Then,∑

xi∈C xi = 11S − 1− z = 1. Therefore, the answer to the Subset Sum problem is yes.

8

	1 True or False
	2 Interval Scheduling
	3 Group Test
	4 Number of Paths in a DAG
	5 Vertex Cut
	6 Number Partition

