Reference Sheet

Unless explicitly stated otherwise, you may use any algorithm discussed in this class or 332 to solve a problem. In particular, you may use any of these functions as libraries (this list is not exhaustive).

Graphs

- TwoColor(G) returns True if G can be 2-colored (i.e., is bipartite), False otherwise. Running time $\Theta(m + n)$
- ConnectedComponents(G) finds the connected components of an undirected graph G. You may assume you get any reasonable representation of this information. Running time $\Theta(m + n)$
- StronglyConnectedComponents(G) finds the strongly connected components of a directed graph G. You may assume you get any reasonable representation of the information. Running time $\Theta(m + n)$
- TopologicalSort(G) returns a list of vertices of a directed graph G in topological order, or null if the graph has a cycle. Running time $\Theta(m + n)$
- CondensationGraph(G) returns the condensation of a directed graph G (a.k.a., the “meta-graph” of G or “graph of SCCs of G). Running time $\Theta(m + n)$
- Prims(G) finds the minimum spanning tree of a (weighted, undirected) graph G. Running time $\Theta(m \log n)$
- Dijkstra(G, s) finds the length of the shortest path from s to every vertex in a (non-negative) weighted, directed graph G. Running time $\Theta(m + n \log n)$. Finds the path itself for any target in $O(n)$ additional time.
- Bellman-Ford(G, s) finds the length of the shortest path from s to every vertex in a weighted, directed graph G. Detects negative weight cycles, if any. Running time $\Theta(mn)$. Can find the path itself for any target in $O(n)$ additional time.
- Floyd-Warshall(G) finds the length of the shortest path between all pairs of vertices in a weighted, directed graph G. Detects negative weight cycles, if any. Running time $\Theta(n^3)$. Can find the path itself for any pair in $O(n)$ additional time.
- Ford-Fulkerson(G, s, t) Finds a maximum flow from s to t and a minimum cut separating s and t. Running time $\Theta(Ef)$, where f is the value of the flow.

Arrays

- QuickSelect(A, k) returns the value which would be at index k of A if A were sorted. Running time $\Theta(n)$
- MaxSubarraySum(A) returns the sum of the maximum sum (contiguous) subarray of A. Running time $\Theta(n)$
- MergeSort(A) returns the sorted version of A. Running time $\Theta(n \log n)$

Others

- Gale-Shapley(riderPrefs, horsePrefs) returns the rider-optimal stable matching. Running time $\Theta(n^2)$ for n riders and n horses
- 2dClosestPoints(A) returns the distance between the two closest points of A (where A contains vectors in \mathbb{R}^2). Running time $\Theta(n \log n)$
- EditDistance(x, y) returns the edit distance between strings x and y. Running time $\Theta(m + n)$ for strings of length m, n
- LP-Solver(vars, constraints, objective) returns the optimal feasible point for a linear program. Running time $\Theta(n^3)$ for an input written with n bits.

There's more information on the back!
Other information

Master Theorem For a recurrence of the following form, where a, b, c, d are constants

$$T(n) = \begin{cases}
 d & \text{if } n \text{ is at most some constant} \\
 aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise}
\end{cases}$$

Where $f(n)$ is $\Theta\left(n^c \cdot \log^k(n)\right)$ for $k \geq 0, a \in \mathbb{Z}^+, c \geq 1$

- If $\log_b(a) < c$ then $T(n) = \Theta\left(n^c \cdot \log^k(n)\right)$
- If $\log_b(a) = c$ then $T(n) = \Theta\left(n^c \cdot \log^{k+1}(n)\right)$
- If $\log_b(a) > c$ then $T(n) = \Theta\left(n^{\log_b(a)}\right)$

DFS Edge Classification For directed graphs

<table>
<thead>
<tr>
<th>Edge type</th>
<th>Definition</th>
<th>(u, v) is of this type if and only if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Edges forming the DFS tree</td>
<td>v was not seen before we processed (u, v)</td>
</tr>
<tr>
<td>Forward</td>
<td>From ancestor to descendant in tree</td>
<td>u, v both seen; $u.\text{start} < v.\text{start} < v.\text{end} < u.\text{end}$</td>
</tr>
<tr>
<td>Back</td>
<td>From descendant to ancestor in tree</td>
<td>u, v both seen; $v.\text{start} < u.\text{start} < u.\text{end} < v.\text{end}$</td>
</tr>
<tr>
<td>Cross</td>
<td>u, v have no ancestor/descendant relationship</td>
<td>u, v both seen; $u.\text{start} < v.\text{end} < u.\text{start} < u.\text{end}$</td>
</tr>
</tbody>
</table>

NP-Complete Problems The following problems are NP-complete

- **k-COLOR:** Given a graph $G = (V, E)$ and an integer k (where $k \geq 3$), return true if there is a function $f : V \rightarrow \{1, \ldots, k\}$ such that if $(u, v) \in E$ then $f(u) \neq f(v)$.

- **VERTEX-COVER:** Given a graph $G = (V, E)$ and an integer k, return true if there is a set of vertices S, such that $|S| \leq k$ and $\forall (u, v) \in E : u \in S \lor v \in S$.

- **CLIQUE:** Given a graph $G = (V, E)$ and an integer k, return true if there is a set of vertices S, such that $|S| \geq k$ and $\forall u, v : [u \neq v \land u, v \in S] \rightarrow (u, v) \in E$.

- **IND-SET:** Given a graph $G = (V, E)$ and an integer k, return true if there is a set of vertices S, such that $|S| \geq k$ and $\forall u, v : [u \neq v \land u, v \in S] \rightarrow (u, v) \notin E$.

- **3-SAT:** Given an expression in CNF form, where each clause contains exactly three literals, return true if there is a setting of the variables that causes the expression to evaluate to true.

- **HAM-PATH:** Given a directed graph G, return true if there is a Hamiltonian Path in G, that is a path that visits each vertex exactly once.