
Homework Extra: Extra Problems
Be sure to read the grading guidelines and style guidelines. Especially to see the suggested format for describing
algorithms.

We sometimes describe how long are justifications or proofs are. These lengths are intended to help you estimate
how much detail we’re expecting, you should not take those estimates as hard length-limitations.

We are not imposing the usual length limit for these problems (problem 2 may have varying lengths for responses;
we’ve tried to indicate about how much detail we’re expecting; we think it’s unlikely you’ll need more than the page
limit, but we won’t restrict you).

You are allowed (and encouraged!!) to collaborate with each other. Brainstorming is much easier to do in a group
than alone! But you must follow the collaboration policy (which includes needing to write your submission on your
own).

You will submit to gradescope; we have a different box for each problem, please give yourself time to submit.

1. Programming: make a change and get the choices [25 points]

We’ve given you a function LIS, which returns the length of the longest increasing subsequence of an array. Your
task is to write code for a variant of the longest increasing subsequence problem.

Specifically, given an array, you should return the longest geometrically increasing subsequence. A subsequence
is geometrically increasing if for chosen elements where i < j, we have 3A[i] < A[j]. I.e. each successive element
must be more than three times larger than the previous. For simplicity, you may assume there are no indices i, j
such that 3A[i] = A[j] and that there are no repeated elements.

Your code will return an ArrayList containing in order the elements of a longest geometrically increasing subse-
quence. You therefore will need to modify the code given both to handle the geometric requirement AND to build the
subsequence itself. (You’re also free to start from scratch, but we think you’ll find the starter code helpful).

You will submit your code to gradescope, where it will be autograded. You may submit until your code is correct
(your score will be the score of your last submission before the deadline).

2. Real World: Application Review of Stable Matchings [25 points]

The goal of this exercise is for you to consider the effects of running algorithms in the real-world. This assignment
is a mix of technical tasks (finding and applying theorems) and non-technical ones (considering tradeoffs between
various real-world effects and groups). The technical aspects can be “right” or “wrong”, but the non-technical
aspects are unlikely to be simply “right” or “wrong” – we won’t have to agree with the non-technical aspects of your
analysis to consider them a good analysis. Our evaluation will be based on how well they connect to the technical
aspects, as well as the depth of reasoning demonstrated.1

2.1. Application Review

Choose one of the following real-world uses of stable matchings:

• Medical Resident Matching (NRMP or programs in other countries)

• high school matchings (New York City, Boston, or other cities)

1For example, if you say “Riders should propose to horses, because Gale-Shapley gives an advantage to people choosing between proposals”
that’s technically incorrect, because Gale-Shapley does the opposite.
If you say “Riders should propose to horses because Gale-Shapley gives an advantage to the proposing side, and I like riders more than I like
horses” that’s technically correct, but not well-thought out or justified.
If you say “Horses should propose to riders because Gale-Shapley gives an advantage to the proposing side, and riders are able to make an
informed choice about whether to be a rider at this stable or another, while horses have no choice but to give rides at the stable they currently
work at” that’s correct technically, and well-justified (even if the staff-member grading believes horses aren’t sentient and we should prioritize
sentient species).

1



• Any other real-world application of stable matchings you can find

• A real-world scenario where stable matchings aren’t currently used, but you think they could be (like a job
market you’re about to go on, for example).

2.2. Find a Theorem

We’ve covered a few theorems about stable matchings in lecture (e.g. proposer-optimality). In a reliable source,
find a theorem about stable matchings we haven’t covered in class.

• Copy-paste the theorem statement, the theorem number (or name, or some other unique identifier in that
text), and cite your source.

• restate the theorem (in your own words) applied to horses and riders

• then state it as applied to your real-world application (e.g. ’doctors’ and ’hospitals’ or ’students’ and ’schools’).

Some places to look:

• Two-Sided Matching by Roth and Sotomayor

• Algorithmics of Matching Under Preferences by Manlove

• The Stable Marriage Problem: Structure and Algorithms by Gusfield and Irving

• Any other textbook or peer-reviewed paper

The first two books are available online through UW libraries (click the links). The third is available physically
through UW libraries, but not online. For papers, you can usually find PDFs via google scholar (if they aren’t
available there, see if a librarian can help, or ask a staff member. Through UW library agreements, you should have
access to just about every peer-reviewed paper written in the last 30 years).

Note that wikipedia/blog posts/etc. are not valid sources (though you may search through these places and then
trace citations to find a reliable source).

2.3. Consider the consequences

Identify two groups of people (or individuals) that are affected by this theorem in the context of the application you
choose in part 1. State the consequences of the theorem for each of the groups. For each group also state whether
you think it would be better for them to use a stable matching algorithm or a free-for-all market (like job markets
in industry). These groups might be the horses and riders, or they might be subgroups within those groups, or even
other people affected by the algorithm but aren’t actually those being matched.

2.4. Proposing

We learned in class that Gale-Shapley can disadvantage the choosing side, but there is a nice property we haven’t
discussed. Gale-Shapley is a “truthful” algorithm for the proposing side. That is, it is if you know you will be on the
proposing side, it will never be to your benefit to lie about your preference list (this statement only applies to the
proposing side, not the choosing side).

When you’re choosing whether to implement the stable matching algorithm in your new context. After some ex-
perimentation on old preference lists, you realize that getting a matching “in the middle” isn’t going to be feasible
(there are too many matchings in the middle to look through them and pick one fairly). Your supervisor gives you
these options for disclosing your methodology to participants:

1. Announce before you receive preference lists that you will run Gale-Shapley with one side proposing.

2. Announce before you receive preference lists that you will run Gale-Shapley with the other side proposing.

3. Announce that you will flip a coin after receiving the preference lists. If its heads one side proposes, if it is
tails the other side proposes.

2

https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/kjtuig/CP51318209620001451
https://alliance-primo.hosted.exlibrisgroup.com/permalink/f/kjtuig/CP71203475000001451


Note that option 3 won’t be “truthful” – you won’t be able to tell people on either side that they won’t benefit by
lying. Consider the tradeoff between “truthfulness” and “fairness.” Of those three options, which do you think is
best in your scenario? Explain why (a few sentences should suffice here).

2.5. Summary

Based on what we’ve learned from class and the observations you’ve made so far, write a few sentences on whether
you think stable matchings should be used in your scenario. (or if assignments should be made in a decentralized
fashion, or some other model should be used to find an algorithm)

3


	1 Programming: make a change and get the choices [25 points]
	2 Real World: Application Review of Stable Matchings [25 points]
	2.1 Application Review
	2.2 Find a Theorem
	2.3 Consider the consequences
	2.4 Proposing
	2.5 Summary


