Homework 3: Greedy

Be sure to read the grading guidelines and style guidelines. Especially to see the suggested format for describing
algorithms.

We sometimes describe how long are justifications or proofs are. These lengths are intended to help you estimate
how much detail we’re expecting, you should not take those estimates as hard length-limitations.

Our solutions for any individual problem will fit in approximately one page or less. Beginning with this homework,
if you submit an answer substantially longer than 2 pages, the TAs are allowed to stop reading at the end of
page 2.

You are allowed (and encouraged!!) to collaborate with each other. Brainstorming is much easier to do in a group
than alone! But you must follow the collaboration policy (which includes needing to write your submission on your
own).

You will submit to gradescope; we will have a different box for each problem, so please give yourself extra time to
submit.

1. Reduction! [10 points]

For a weighted graph G = (V, E), we call a set S C E a “maximum spanning tree” if it is a spanning tree, and the
sum of its edges is at least as large as the sum of any other spanning tree.

You are given the following library function.

MinSpanningTree

Input: A weighted graph made up of a set of edges E and a set of vertices V where the i edge has weight w;
Output: A minimum-weight set of edges such that you can get from any vertex of G to any other on only those
edges

Explain how to use this library function to find the maximum spanning tree of a graph G, and briefly explain why
it works (our full answer is only 3-4 setences).

2. Find a Counter-Example [10 points]

For a graph G = (V, E), we call a set S C V a “vertex cover” if V(u,v) € E : (u € SV v € S). In English, a
vertex cover is a subset of the vertices so that every edge has at least one of its endpoints in the set.! We are usually
interested in small vertex covers (since V is always a vertex cover). Consider the following greedy algorithm for
finding a small vertex cover:

function GreedyVertexCover(G = (V, E))
S+ o
while F is not empty do
Let u be the highest degree vertex > not counting deleted edges
Add u to S
Delete all edges incident to u from E > we know these are covered by u and can ignore them

return S

Prove this algorithm is incorrect by counterexample. Specifically, give an example of a graph on which this algorithm
does not produce the smallest vertex cover. Show both the vertex cover the algorithm finds and a smaller cover.
You may not use the graph discussed in lecture 8 to show the other greedy VC algorithm not optimal.

1The name is somewhat counter-intuitive; the set contains vertices — we say “the vertices cover the edges” so it’s the edges that are covered
(by the vertices) in a vertex cover.



3. Just A Proof [25 points]

In this problem you’ll learn a different greedy algorithm for MSTs and prove it correct.

Let G = (V, E) be a graph where edge i has weight w;. Call the edge e “redundant” if removing e would not cause
the graph to be disconnected.

Consider the following greedy algorithm
function RedundancyRemover(G = (V, E))
Sort edges in decreasing order of edge weight.
for each edge e in decreasing order do
if e is redundant then
delete e
return remaining edges, which are an MST.

(a) Prove that if G is a connected graph, then RedundancyRemover produces a spanning tree (don’t worry about
minimum yet!) [5 points]

(b) Prove that if GG is a connected graph with distinct edge weights, then RedundancyRemover produces the mini-
mum spanning tree.
You may use as a fact that since the edge weights are distinct, the MST is unique. [20 points]
Hint: We strongly recommend using a structural result here. You should think about the structural result
from class and see what the corresponding one here might be.

4. TAs need Thai food [25 points]

At the midterm grading party, TAs need to eat. Therefore, Robbie needs to provide food?. To order the proper
amount, Robbie needs to know (in minutes) how long it will take to finish grading. And, ideally, he’d like grading
to go as fast as possible (the less food ordered, the fancier it can be for the same price).

He knows for his group of the k TAs, that the i TA takes exactly ¢; minutes to fully grade a single midterm
(regardless of who submitted that midterm). Because he’s only worried about food ordering for now, Robbie just
needs to figure out the smallest number of minutes it would take to get the midterms graded he doesn’t need to
record how many midterms each TA grades.

(a) Design for Robbie an algorithm that runs in polynomial time k, n, max; ¢; which gives us the smallest number
of minutes it takes to grade all midterms. For example, if we have variables k = 3 TAs, n = 4 midterms, and
t; = 1,t3 = 3,t3 = 60 - then you should return 3.

(Hint: We only care about the number of minutes here, not which TA grades what. Your algorithm only
needs to return the number of minutes the optimal configuration would take, NOT the optimal configuration
of which TAs grade which midterms. This should make the pseudocode easier.)

(b) Prove that your algorithm gives exactly the optimal time in minutes.
(c) What is the running time of your algorithm? Briefly (3-4 sentences) explain.

5. Interval Scheduling Correction [25 points]

Robbie said in Wednesday’s lecture that “fewest overlaps” is a correct greedy algorithm for interval scheduling.

Robbie was wrong! There are instances where “fewest overlaps” gives a non-optimal answer. You're going to find
out why in this problem.

2Hangry TAs don’t make for good graders



More formally, define the fewest overlaps heuristic as follows:

function FewestOverlaps(Intervals[])
Solution <+ empty list
while Intervals is not empty do
for each interval u in Intervals do
Count the number of intervals in Intervals overlapping u

Let v be an interval with the smallest number of overlaps > Break ties arbitrarily
Add v to Solution
Delete every interval that overlaps with v.

return Solution

Robbie thought there was a proof of correctness! He had something like this in mind.
Recall the Lemma from lecture

Lemma 1. If u is the interval with the earliest end time, and u overlaps with v and w, then v and w overlap each other.

Spoof. Since u has the earliest end time, anything it overlaps with must overlap with the last instant at which u is
active (the “right endpoint” of u). Thus both v and w are active at u’s right endpoint, but that means they overlap
with each other, as claimed. O

We'll use a structural result here. The specific claim is that: for every k, after both FewestOverlaps and EarliestEndTime
have selected their first k intervals, the remaining sets of valid remaining intervals (i.e., those not overlapping any
of the k selected intervals) are the same.

Spoof. Suppose, for the sake of contradiction, the claim is false. We consider the first selection of an interval which
would lead to different remaining sets of valid intervals.

Let u be interval with the earliest end time and this step of the algorithm, and suppose it overlaps with a other
intervals.

Case 1: u is also selected by FewestOverlaps

This case is impossible — both algorithms select u, so they eliminate exactly the overlapping intervals, and since
this was to be the first step of disagreement, we had eliminated the same sets until now. Thus they still have the
same set of valid remaining intervals.

Case 2: u is not selected by FewestOverlaps

In this case, we’ll use Lemma 1 to derive a contradiction. Call the intervals that u overlaps with vy, ve, ..., v,; without
loss of generality, let v; be the interval selected by FewestOverlaps. By Lemma 1, v; overlaps with each of vs, ..., v,,
and it also overlaps with «. That gives us a list of a intervals overlapping with v.

Thus both FewestOverlaps and EarliestEndTime will eliminate all of u, vy, ..., v, from their valid set of intervals.
And by assumption, they started this iteration with the same sets of valid intervals. But we assumed this was the
first step at which the algorithms would eliminate different sets. We have defined the v; as the only intervals
overlapping with u, so it must be that v; also intersects an additional interval which will be removed (or else the
valid sets remaining would be the same). But then v, overlapped with at least a + 1 intervals. This contradicts the
definition of FewestOverlaps, as it would not select v;, which had more overlaps than . O

(a) Fewest overlaps doesn’t actually “pass the smell test” for an algorithm idea — adding in a bunch of copies of
an interval could change how many elements it overlaps with, but won’t change the optimal answer.
Design a counter-example to the optimality of FewestOverlaps. Drawing a picture is probably the easiest way
to communicate a counter-example. Also include: which elements are in the optimal solution, and which
elements FewestOverlaps will find. [10 points]

(b) The proof must be wrong! Clearly describe the error. A description cannot just be “the counter-example shows
it must be wrong.” You need to find an incorrect leap in logic, invalid assumption, missing case, or similar
error. Nonetheless, it will probably help to run the algorithm on your example with an eye toward the proof
to see where it breaks down.

Our explanation is only a few sentences. [15 points]
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