
CSE 421 Winter 2021
Homework 8

Due: Friday, March 12, 2021, 6:00 pm

Problem 1:
Suppose that you had an algorithm C that on input any (G, k) that correctly answers the Vertex-Cover problem.
That is, on input (G, k) for G an undirected graph and k an integer, correctly answers YES if undirected graph G
has a vertex cover of size at most k and answers NO if there is no such cover. Show that on any input (G′, k′),
with a polynomial amount of work and a polynomial number of calls to C you can actually find a vertex cover W
of G′ of size at most k′ if one exists and answer FAIL otherwise.

Problem 2:
At an amusement park there is a dart game that has overlapping regions, each enclosed by its own colored line
marked on the wall. Contestants win at the dart game if they can toss the darts at the wall and land at least one
dart inside every marked region. A single dart may land inside multiple regions, but they only get k of them.

We consider an abstract version of the dart game, which is a discrete variant with only n places, numbered 1
through n, where a dart could land, and each of the m regions, R1, . . . , Rm, is just an arbitrary subset of {1, . . . , n}.
The Abstract-Dart-Game problem asks whether there is a set of at most k spots among {1, . . . , n} so that if darts
land in all those spots then every region would contain a dart.

Prove that the Abstract-Dart-Game problem is NP-complete.

Problem 3:
This problem is a variant of the Interval Scheduling problem that we saw how to solve with a greedy algorithm.
In this version of the problem, there is a single resource available for scheduling, but instead of requiring the
resource for the whole time between the start time si and finish time fi , the request has scheduled breaks during
which time other jobs may use the resource. That is, though job i has an overall start time of si and finish time fi , it
may have a break that starts at some time bi1 and ends a ei1 and, after returning for a while, might have a second
break beginning at some bi2 and ending at ei2, etc. In general we would have si < bi1 < ei1 < bi2 < ei2...< fi and
no bound on the number of breaks.

For example, if we had two requests, one beginning on hour 0 and one beginning on hour 1, each of which
repeatedly runs for an hour and then takes an hour break, then the two requests would be compatible with each
other and could both be scheduled.

Assume that all start, finish, and break times for all requests are integers and the total time range is between 0 and
T . The Interval-Scheduling-with-Breaks Problem is to determine. given a collection of descriptions of n requests
with breaks and an integer k, whether or not it is possible to schedule at least k of the requests on the single
resource.

Prove that the Interval-Scheduling-with-Breaks problem is NP-complete.
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Problem 4 (Extra credit):
In this problem, as input you are given an m × n array A of real numbers for which you are promised that the
sum of each row and the sum of each column is an integer. Your goal is to find a way of rounding each matrix
entry up to the closest integer or down to the closest integer while maintaining all the row and column sums.
More precisely, give a polynomial-time algorithm that will produce a new m× n integer array B such that B[i, j]
is dA[i, j]e or bA[i, j]c, and each row sum or column sum in B is equal to the corresponding sum in A.

For example, if the input is the array on the left, your algorithm could output any of the arrays on the right.

0.4 0.1 1.5
0.6 1.9 0.5

⇒
1 0 1
0 2 1

or
0 0 2
1 2 0

or
0 1 1
1 1 1
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