
CSE 421 Winter 2021
Homework 7

Due: Friday, March 5, 2021, 6:00 pm

Problem 1:
Let G = (V, E) be an arbitrary flow network, with source s, sink t, and capacity ce for each directed edge e ∈ E.
Let f be a maximum flow in G that has flow value v( f ). Let (A, B) be a minimum st-cut in G and let k be the
number of edges directed from A to B that cross this cut. Suppose that we add 1 to the capacity ce of every edge in
E to get a new capacity c′e for each edge e in G. Let f ′ be a maximum flow in the graph G using capacities given
by the c′e. Prove or disprove each of the following statements.

• We always have v( f ′) = v( f ) + k.

• It is sometimes the case that v( f ′)< v( f ) + k.

• It is sometimes the case that v( f ′)> v( f ) + k.

Problem 2:
A service provider has deployed a wireless network in a city via of a number of base station towers at fixed
locations in the city. The stations were installed at different times so they have a variety of power/reach of their
signal and can each support a variety numbers of clients. Each client they wish to serve is also assumed to be
served via an antenna at a fixed and known location. The goal of the provider is to serve as many of their clients
as possible by allocating their clients to talk with with specific based stations.

Suppose that the locations of each of the B base station towers and each of the n client antennas are at known co-
ordinates in the x y-plane. Suppose that base stations 1 through B have signal radius r1, . . . , rB, respectively (that
is, base station b can communicate with any client within Euclidean distance rb of its location) and, respectively,
can handle a load of up to L1, . . . , LB clients at the same time,

Give a polynomial-time algorithm that will figure out the maximum number of clients that the service provider can
communicate with at a time, and an allocation of clients to base station towers that will achieve this maximum.
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Problem 3:
In emergency planning we often need to set up escape routes ahead of time in case of a disaster. In this problem
you are given a directed graph G = (V, E) representing a set of possible 1-way roads. Each node in V is either a
populated node in P, a safe node in S, or an intersection node in I . (These are disjoint sets of nodes whose union
is V .)

(a) An escape plan consists of a collection C of directed paths in G such that

– each path in C begins at a node in P and ends at a node in S,

– for each node u ∈ P, there is exactly one path in C that begins at u, and

– no two paths in C share any edges of G.

Give a polynomial-time algorithm to determine whether or not an escape plan exists.

(b) Suppose also that every node v not in P has a capacity cv . A congestion-free escape plan is an escape plan
in which

– the directed path beginning at node u ∈ P does not go through any other populated node, and

– for every node v not in P, the total number of paths containing v is at most cv .

Show how to determine in polynomial-time whether or not such a congestion-free escape plan exists and
produce such a plan if one does.

Problem 4 (Extra credit):
We saw how repeatedly augmenting along shortest paths (given by a BFS each time) produced a better runtime
analysis for general network flow. In this problem you will do something similar in the special case of finding a
maximum matching in a bipartite graph G = (V, E) where the two sides of V are X and Y , |V | = n and |E| = m.
The idea here will be to augment along many shortest paths at the same time. In order for this to work, the paths
better not share any edges. Your algorithm will add the slightly stronger condition that the paths do not share
any vertices and will include as many shortest paths as possible at each step.

More precisely, at each round the new algorithm will simultaneously augment along all paths in some maximal
set Pshor t of vertex-disjoint shortest augmenting paths in the flow graph associated with the bipartite matching
problem. (In other words, if d = d f (s, t) is the length of the shortest augmenting path in the residual graph G f
then every path in Pshor t has length d, no two paths in Pshor t share any vertices other than s or t and any other
st-path of length d in G f shares at least one vertex other than s and t with some path in Pshor t .)

(a) Show how to find a set Pshor t and do all the augmentations on its paths to get a new flow f ′ in time O(m+n).

(b) Prove that d f ′(s, t)≥ d f (s, t) + 2.

(c) Given two matchings M ′ and M on graph G we can define the symmetric difference, M ′⊕M , of M ′ and M
to be the graph consisting of edges that occur in exactly one of the two matchings. M ′ ⊕ M consists of a
collection of vertex-disjoint paths and cycles (why?).
Show that if M ′ is a maximum matching and flow f corresponds to a matching of M then

i. M ′ ⊕M contains exactly |M ′| − |M | vertex-disjoint odd-length paths,

ii. Any path of odd length k in M ′ ⊕M corresponds to an augmenting path of length k+ 2 in G f .

iii. Use these two properties to prove that once all augmenting paths in G f are of length at least k+2 then
at most n/k additional augmentations will produce a maximum flow (and hence maximum matching).

(d) Use the above analysis with a suitable value of k to show that this algorithm computes a maximum matching
in O(m

p
n) time
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