CSE 421: Introduction to Algorithms

Stable Matching

Paul Beame
Matching Residents to Hospitals

- **Goal:** Given a set of preferences among hospitals and medical school residents (graduating medical students), design a self-reinforcing admissions process.

- **Unstable pair:** applicant \(x \) and hospital \(y \) are unstable if:
 - \(x \) prefers \(y \) to their assigned hospital.
 - \(y \) prefers \(x \) to one of its admitted residents.

- **Stable assignment.** Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital side deal from being made.
Simpler: Stable Matching Problem

- **Goal.** Given two groups of \(n \) people each, find a "suitable" matching.
 - Participants rate members from opposite group.
 - Each person lists members from the other group in order of preference from best to worst.

<table>
<thead>
<tr>
<th></th>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
</tr>
<tr>
<td>X</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Y</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Group 0 Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
</tr>
<tr>
<td>A</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

Group 1 Preference Profile
Stable Matching Problem

- **Perfect matching:** everyone is matched to precisely one person from the other group.

- **Stability:** self-reinforcing, i.e. no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair $m-w$ from different groups is unstable if m and w prefer each other to current partners.
 - Unstable pair $m-w$ could each improve by ignoring the assignment.

- **Stable matching:** perfect matching with no unstable pairs.

- **Stable matching problem.** Given the preference lists of n people from each of two groups, find a stable matching between the two groups if one exists.
Stable Matching Problem

Q. Is assignment X-C, Y-B, Z-A stable?

Group 0 Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>Group 1 Preference Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A</td>
</tr>
<tr>
<td>Y</td>
<td>B</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
</tr>
</tbody>
</table>

favorite ➔ **least favorite**

Group 1 Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>Group 1 Preference Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
</tbody>
</table>
Stable Matching Problem

- Q. Is assignment X-C, Y-B, Z-A stable?
- A. No. B and X prefer each other.

<table>
<thead>
<tr>
<th>Favorite</th>
<th>Least Favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>X</td>
<td>A</td>
</tr>
<tr>
<td>Y</td>
<td>B</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
</tr>
</tbody>
</table>

Group 0 Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>Least Favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
</tbody>
</table>

Group 1 Preference Profile
Stable Matching Problem

Q. Is assignment X-A, Y-B, Z-C stable?
A. Yes.
Stable Roommate Problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.
- 2n people; each person ranks others from 1 to 2n-1.
- Assign roommate pairs so that no unstable pairs.

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

- A-B, C-D ⇒ B-C unstable
- A-C, B-D ⇒ A-B unstable
- A-D, B-C ⇒ A-C unstable

Observation. Stable matchings do not always exist for stable roommate problem.
Propose-And-Reject Algorithm

- Propose-and-reject algorithm. [Gale-Shapley 1962]
 Intuitive method that guarantees to find a stable matching.
- One group is designated proposers, the other receivers

Initialize each person to be free.

while (some proposer is free and hasn't proposed to every receiver) {
 Choose such a proposer m
 w = 1st receiver on m's list to whom m has not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to current tentative match m')
 assign m and w to be engaged, and m' to be free
 else
 w rejects m
}

Proof of Correctness: Termination

- **Observation 1.** Proposers propose to receivers in decreasing order of preference.

- **Observation 2.** Once a receiver is matched, they never become unmatched; they only "trade up."

- **Claim.** Algorithm terminates after at most n^2 iterations of while loop.

- **Proof.** Each time through the while loop a proposer proposes to a new receiver. There are only n^2 possible proposals.

- **Table 1:** Proposers' Preference Profile

- **Table 2:** Receivers' Preference Profile

$n(n-1) + 1$ proposals required in the worst case
Proof of Correctness: Perfection

- **Claim.** Everyone gets matched.

- **Proof.** (by contradiction)
 - Suppose, for sake of contradiction, that some proposer Z is not matched upon termination of algorithm.
 - Then some receiver, say A, is not matched upon termination.
 - By Observation 2 (only trading up, never becoming unmatched), A was never proposed to.
 - But, Z proposes to everyone, since Z ends up unmatched. **Contradiction.**
Proof of Correctness: Stability

- **Claim.** No unstable pairs.
- **Proof.** (by contradiction)
 - Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S^*.
 - **Case 1:** Z never proposed to A.
 - ⇒ Z prefers GS partner to A.
 - ⇒ A-Z is stable.
 - **Case 2:** Z proposed to A.
 - ⇒ A rejected Z (right away or later)
 - ⇒ A prefers GS partner to Z.
 - ⇒ A-Z is stable.

- In either case A-Z is stable, a contradiction. □
Summary

- **Stable matching problem.** Given \(n \) people in each of two groups, and their preferences, find a stable matching if one exists.

- **Gale-Shapley algorithm.** Guarantees to find a stable matching for any problem instance.

- **Q.** How to implement GS algorithm efficiently?

- **Q.** If there are multiple stable matchings, which one does GS find?
Implementation for Stable Matching Algorithms

- **Problem size**
 - \(N = 2n^2 \) words
 - \(2n \) people each with a preference list of length \(n \)
 - \(2n^2 \log n \) bits
 - specifying an ordering for each preference list takes \(n \log n \) bits

- **Brute force algorithm**
 - Try all \(n! \) possible matchings
 - Do any of them work?

- **Gale-Shapley Algorithm**
 - \(n^2 \) iterations, each costing constant time as follows:
Efficient Implementation

- **Efficient implementation.** We describe \(O(n^2) \) time implementation.

- **Representing proposers and receivers.**
 - Assume proposers are named \(1, \ldots, n \).
 - Assume receivers are named \(1', \ldots, n' \).

- **Engagements.**
 - Maintain a list of free proposers, e.g., in a queue.
 - Maintain two arrays \(\text{match}[m] \) and \(\text{match}'[w] \).
 - set entry to 0 if unmatched
 - if \(m \) matched to \(w \) then \(\text{match}[m]=w \) and \(\text{match}'[w]=m \)

- **Proposals.**
 - For each proposers, maintain a list of receivers, ordered by preference.
 - Maintain an array \(\text{count}[m] \) that counts the number of proposals made by proposer \(m \).
Efficient Implementation

- Receivers rejecting/accepting.
 - Does receiver w prefer proposer m to proposer m'?
 - For each receiver, create inverse of preference list of proposers.
 - Constant time access for each query after $O(n)$ preprocessing per receiver. $O(n^2)$ total reprocessing cost.

```
for i = 1 to n
    inverse[pref[i]] = i
```

A prefers proposer 3 to 6 since $\text{inverse}[3] = 2 < 7 = \text{inverse}[6]$

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pref</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.

- A-X, B-Y, C-Z.
- A-Y, B-X, C-Z.
Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

Def. Proposer \(m \) is a valid partner of receiver \(w \) if there exists some stable matching in which they are matched.

Proposer-optimal assignment. Each proposer receives best valid partner (according to their preferences).

Claim. All executions of GS yield a proposer-optimal assignment, which is a stable matching!

- No reason a priori to believe that proposer-optimal assignment is perfect, let alone stable.
- Simultaneously best for each and every proposer.
Proposer Optimality

- **Claim.** GS matching S^* is proposer-optimal.
- **Proof.** (by contradiction)
 - Suppose some proposer is paired with someone other than their best partner. Proposers propose in decreasing order of preference \Rightarrow some proposer is rejected by a valid partner.
 - Let Y be the proposer who is the first such rejection, and let A be the receiver who is first valid partner that rejects him.
 - Let S be a stable matching where A and Y are matched.

Must exist since Y and A are valid partners
Claim. GS matching S^* is proposer-optimal.

Proof. (by contradiction)

- Suppose some proposer is paired with someone other than their best partner. Proposers propose in decreasing order of preference \Rightarrow some proposer is rejected by a valid partner.
- Let Y be the proposer who is the first such rejection, and let A be the receiver who is first valid partner that rejects him.
- Let S be a stable matching where A and Y are matched.
- In building S^*, when Y is rejected, A forms (or reaffirms) engagement with a proposer, say Z, whom they prefer to Y.
- Let B be Z's partner in S.

Must exist since Y and A are valid partners
Proposer Optimality

- **Claim.** GS matching S^* is proposer-optimal.
- **Proof.** (by contradiction)
 - Suppose some proposer is paired with someone other than their best partner. Proposers propose in decreasing order of preference \Rightarrow some proposer is rejected by a valid partner.
 - Let Y be the proposer who is the first such rejection, and let A be the receiver who is first valid partner that rejects Y.
 - Let S be a stable matching where A and Y are matched.
 - In building S^*, when Y is rejected, A forms (or reaffirms) engagement with a proposer, say Z, whom they prefer to Y.
 - Let B be Z's partner in S.
 - In building S^*, Z is not rejected by any valid partner at the point when Y is rejected by A.
 - Thus, Z prefers A to B.
 - But A prefers Z to Y.
 - Thus $A-Z$ is unstable in S. \blacksquare

since Y was the first to be rejected by a valid partner
Stable Matching Summary

- **Stable matching problem.** Given preference profiles of two groups of \(n \) people, find a stable matching.

 Nobody prefer to be with each other than with their assigned partner

- **Gale-Shapley algorithm.** Finds a stable matching in \(O(n^2) \) time.

- **Proposer-optimality.** In GS, each proposer receives best valid partner.

 \(w \) is a valid partner of \(m \) if there exist some stable matching where \(m \) and \(w \) are paired

- **Q.** Does proposer-optimality come at the expense of the receivers?
Receiver Pessimality

- Receiver-pessimal assignment. Each receiver receives worst valid partner.

- Claim. GS finds receiver-pessimal stable matching S^*.

- Proof. (Contradiction again).
 - Suppose $A-Z$ matched in S^*, but Z is not worst valid partner for A.
 - There exists stable matching S in which A is paired with a proposer, say Y, whom A likes less than Z.
 - Let B be Z's partner in S.
 - Z prefers A to B. ← proposer-optimality of S^*
 - Thus, $A-Z$ is an unstable in S. •
Extensions: Matching Residents to Hospitals

- **Original:** Proposers ≈ hospitals, Receivers ≈ med school residents.

- **Variant 1.** Some participants declare others as unacceptable.

- **Variant 2.** Unequal number of proposers and receivers.

- **Variant 3.** Limited polygamy.

- **Def.** Matching S is **unstable** if there is a hospital h and resident r such that:
 - h and r are acceptable to each other; and
 - either r is unmatched, or r prefers h to her assigned hospital; and
 - either h does not have all its places filled, or h prefers r to at least one of its assigned residents.

- e.g. resident A unwilling to work in Cleveland
- e.g. hospital X wants to hire 3 residents
Application: Matching Residents to Hospitals

- **NRMP.** (National Resident Matching Program)
 - Original use just after WWII.
 - Ides of March, 23,000+ residents.

- **Rural hospital dilemma.**
 - Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
 - Rural hospitals were under-subscribed in NRMP matching.
 - How can we find stable matching that benefits "rural hospitals"?

- **Rural Hospital Theorem.** Rural hospitals get exactly same residents in every stable matching!

- **Note:** Pre-1995 NRMP favored hospitals (they proposed). Changed in 1995 to favor residents (after a lawsuit).
Lessons Learned

- Powerful ideas learned in course.
 - Isolate underlying structure of problem.
 - Create useful and efficient algorithms.

- Potentially deep social ramifications.
 [legal disclaimer]
Deceit: Machiavelli Meets Gale-Shapley

- **Q.** Can there be an incentive to misrepresent your preference profile?
 - Assume you know propose-and-reject algorithm will be run and who will be proposers.
 - Assume that you know the preference profiles of all other participants.
- **Fact.** No, for proposers. Yes, for some receivers. No mechanism can guarantee a stable matching and be cheatproof.

Group 0 Preference List

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Y</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Group 1 True Preference Profile

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

A Lies

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>Z</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>
Extra Slides
Stable Matching Problem

- **Goal:** Given n men and n women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victor</td>
<td>Brenda</td>
<td>Amy</td>
<td>Diane</td>
<td>Erika</td>
</tr>
<tr>
<td>Walter</td>
<td>Diane</td>
<td>Brenda</td>
<td>Amy</td>
<td>Claire</td>
</tr>
<tr>
<td>Xavier</td>
<td>Brenda</td>
<td>Erika</td>
<td>Claire</td>
<td>Diane</td>
</tr>
<tr>
<td>Yuri</td>
<td>Amy</td>
<td>Diane</td>
<td>Claire</td>
<td>Brenda</td>
</tr>
<tr>
<td>Zoran</td>
<td>Brenda</td>
<td>Diane</td>
<td>Amy</td>
<td>Erika</td>
</tr>
</tbody>
</table>

Men's Preference List
Stable Matching Problem

- **Goal:** Given \(n \) men and \(n \) women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

<table>
<thead>
<tr>
<th>Women's Preference List</th>
<th>favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Zoran</td>
<td>Victor</td>
<td>Walter</td>
<td>Yuri</td>
<td>Xavier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brenda</td>
<td>Xavier</td>
<td>Walter</td>
<td>Yuri</td>
<td>Victor</td>
<td>Zoran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claire</td>
<td>Walter</td>
<td>Xavier</td>
<td>Yuri</td>
<td>Zoran</td>
<td>Victor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diane</td>
<td>Victor</td>
<td>Zoran</td>
<td>Yuri</td>
<td>Xavier</td>
<td>Walter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erika</td>
<td>Yuri</td>
<td>Walter</td>
<td>Zoran</td>
<td>Xavier</td>
<td>Victor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Women's Preference List