CSE 421: Introduction to Algorithms

Dynamic Programming

Paul Beame
Dynamic Programming

- Dynamic Programming
 - Give a solution of a problem using smaller sub-problems where the parameters of all the possible sub-problems are determined in advance
 - Useful when the same sub-problems show up again and again in the solution
A simple case: Computing Fibonacci Numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

- Recursive algorithm:
 - `Fibo(n)`
 - if n=0 then return(0)
 - else if n=1 then return(1)
 - else return(`Fibo(n-1)`+`Fibo(n-2)`)
Call tree - start

```
F (6)  
  |   
F (5)  
  |   
F (4)  
  |   
F (3)  
  |   
F (2)  
  |   
F (1)  
  |   
F (0)  
  |   
1 0
```
Full call tree
Memoization (Caching)

- Remember all values from previous recursive calls

- Before recursive call, test to see if value has already been computed

Dynamic Programming

- Convert memoized algorithm from a recursive one to an iterative one
Fibonacci Dynamic Programming Version

- FiboDP(n):
 - F[0] ← 0
 - F[1] ← 1
 - for i = 2 to n do
 - F[i] ← F[i-1] + F[i-2]
 - endfor
 - return(F[n])
Fibonacci: Space-Saving Dynamic Programming

- FiboDP(n):
 - \(\text{prev} \leftarrow 0 \)
 - \(\text{curr} \leftarrow 1 \)
 - for \(i = 2 \) to \(n \) do
 - \(\text{temp} \leftarrow \text{curr} \)
 - \(\text{curr} \leftarrow \text{curr} + \text{prev} \)
 - \(\text{prev} \leftarrow \text{temp} \)
 - endfor
 - return(\(\text{curr} \))
Dynamic Programming

Useful when

- same recursive sub-problems occur repeatedly
- Can anticipate the parameters of these recursive calls
- The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved

- principle of optimality

 “Optimal solutions to the sub-problems suffice for optimal solution to the whole problem”
Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm

- Show that the number of different values of parameters in the recursive calls is “small”
 - e.g., bounded by a low-degree polynomial
 - Can use memoization

- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.
Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
 - w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used
 \[w_i = f_i - s_i \]
- **Goal:** Find compatible subset S of requests with maximum total weight
Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time s_i
 - Doesn’t work
 - Shortest request time $f_i - s_i$
 - Doesn’t work
 - Fewest conflicts
 - Doesn’t work
Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time s_i
 - Doesn’t work
 - Shortest request time $f_i - s_i$
 - Doesn’t work
 - Fewest conflicts
 - Doesn’t work
 - Earliest finish time f_i
 - Doesn’t work
Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time s_i
 - Doesn’t work
 - Shortest request time $f_i - s_i$
 - Doesn’t work
 - Fewest conflicts
 - Doesn’t work
 - Earliest finish time f_i
 - Doesn’t work
 - Largest weight w_i
 - Doesn’t work
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i so $f_1 \leq f_2 \leq \ldots \leq f_n$
- Say request i comes before request j if $i < j$
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i so $f_1 \leq f_2 \leq \ldots \leq f_n$
- Say request i comes before request j if $i < j$
- For any request j let $p(j)$ be
 - the largest-numbered request before j that is compatible with j
 - or 0 if no such request exists
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i so $f_1 \leq f_2 \leq \ldots \leq f_n$
- Say request i comes before request j if $i < j$
- For any request j let $p(j)$ be
 - the largest-numbered request before j that is compatible with j
 - or 0 if no such request exists

```
1   0
2   0
3   1
4   0
5   2
6   1
7   3
```
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time f_i so $f_1 \leq f_2 \leq \ldots \leq f_n$
- Say request i comes before request j if $i < j$
- For any request j let $p(j)$ be
 - the largest-numbered request before j that is compatible with j
 - or 0 if no such request exists
- Therefore \{1,\ldots,p(j)\} is precisely the set of requests before j that are compatible with j
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Two cases depending on whether an optimal solution \(O \) includes request \(n \)
 - If it \textbf{does} include request \(n \) then all other requests in \(O \) must be contained in \(\{1, \ldots, p(n)\} \)
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

Two cases depending on whether an optimal solution \(O \) includes request \(n \)

- If it \textbf{does} include request \(n \) then all other requests in \(O \) must be contained in \(\{1,\ldots,p(n)\} \)
- Not only that!
 - Any set of requests in \(\{1,\ldots,p(n)\} \) will be compatible with request \(n \)
 - So in this case the optimal solution \(O \) must contain an optimal solution for \(\{1,\ldots,p(n)\} \)
 - “Principle of Optimality”
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- All subproblems involve requests \{1,\ldots,i\} for some \(i\)

- For \(i=1,\ldots,n\) let \(\text{OPT}(i)\) be the weight of the optimal solution to the problem \{1,\ldots,i\}

- The two cases give

\[
\text{OPT}(n) = \max[w_n + \text{OPT}(p(n)), \text{OPT}(n-1)]
\]
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- All subproblems involve requests \{1,\ldots,i\} for some \(i\)

- For \(i=1,\ldots,n\) let \(\text{OPT}(i)\) be the weight of the optimal solution to the problem \{1,\ldots,i\}

- The two cases give
 \[\text{OPT}(n) = \max[w_n + \text{OPT}(p(n)), \text{OPT}(n-1)]\]

- Also
 - \(n \in O \text{ iff } w_n + \text{OPT}(p(n)) > \text{OPT}(n-1)\)
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Sort requests and compute array $p[i]$ for each $i=1,...,n$

ComputeOpt(n)

 if $n=0$ then return(0)
 else
 u←ComputeOpt($p[n]$)
 v←ComputeOpt($n-1$)
 if $w_n+u>v$ then return(w_n+u)
 else return(v)
 endif
Towards Dynamic Programming: Step 2 – Small # of parameters

- `ComputeOpt(n)` can take exponential time in the worst case
 - 2^n calls if $p(i) = i-1$ for every i
Towards Dynamic Programming: Step 2 – Small # of parameters

- ComputeOpt(n) can take exponential time in the worst case
 - 2^n calls if $p(i) = i-1$ for every i

- There are only n possible parameters to ComputeOpt
Towards Dynamic Programming: Step 2 – Small # of parameters

- ComputeOpt(n) can take exponential time in the worst case
 - 2^n calls if $p(i) = i-1$ for every i

- There are only n possible parameters to ComputeOpt

- Store these answers in an array $\text{OPT}[n]$ and only recompute when necessary
 - Memoization
Towards Dynamic Programming: Step 2 – Small # of parameters

- **ComputeOpt(n)** can take exponential time in the worst case
 - 2^n calls if $p(i)=i-1$ for every i

- There are only **n** possible parameters to **ComputeOpt**

- Store these answers in an array **OPT[n]** and only recompute when necessary
 - Memoization

- Initialize **OPT[i] = 0** for $i=1,\ldots,n$
Dynamic Programming: Step 2 – Memoization

ComputeOpt(n)
if n=0 then return(0)
else
 u ← MComputeOpt(p[n])
 v ← MComputeOpt(n-1)
 if \(w_n + u > v \) then
 return(\(w_n + u \))
 else return(v)
endif

MComputeOpt(n)
if OPT[n] = 0 then
 v ← ComputeOpt(n)
 OPT[n] ← v
 return(v)
else
 return(OPT[n])
endif
Dynamic Programming Step 3: Iterative Solution

- The recursive calls for parameter n have parameter values i that are < n

```plaintext
IterativeComputeOpt(n)
array OPT[0..n]
OPT[0] ← 0
for i=1 to n
    if wi + OPT[p[i]] > OPT[i-1] then
        OPT[i] ← wi + OPT[p[i]]
    else
        OPT[i] ← OPT[i-1]
    endif
endfor
```
Producing the Solution

IterativeComputeOptSolution(n)
array OPT[0..n], Used[1..n]
OPT[0] ← 0
for i = 1 to n
 if \(w_i + OPT[p[i]] > OPT[i-1] \) then
 OPT[i] ← \(w_i + OPT[p[i]] \)
 Used[i] ← 1
 else
 OPT[i] ← OPT[i-1]
 Used[i] ← 0
 endif
endfor

\(i \leftarrow n \)
S ← \(\emptyset \)
while \(i > 0 \) do
 if Used[i] = 1 then
 S ← S \cup \{i\}
 i ← p[i]
 else
 i ← i - 1
 endif
endwhile
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$p[i]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPT[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$p[i]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>OPT[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$p[i]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>OPT[i]</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Used[i]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$p[i]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>OPT[i]</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Used[i]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$S = \{9, 7, 2\}$
Segmented Least Squares

Least Squares

- Given a set P of n points in the plane $p_1=(x_1,y_1),...,p_n=(x_n,y_n)$ with $x_1<...<x_n$ determine a line L given by $y=ax+b$ that optimizes the total ‘squared error’

 - Error(L,P)=$\sum_i(y-ax_i-b)^2$

- A classic problem in statistics
- Optimal solution is known (see text)
 - Call this line(P) and its error error(P)
Least Squares
Segmented Least Squares

What if data seems to follow a piece-wise linear model?
Segmented Least Squares
Segmented Least Squares
Segmented Least Squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
Segmented Least Squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose $n-1$ pieces we could fit with 0 error
 - Not a fair measure of data fit
Segmented Least Squares

- What if data seems to follow a piece-wise linear model?
- Number of pieces to choose is not obvious
- If we chose n-1 pieces we could fit with 0 error
 - Not a fair measure of data fit
- Add a penalty of C times the number of pieces to the error to get a total penalty
Segmented Least Squares

- What if data seems to follow a piece-wise linear model?

- Number of pieces to choose is not obvious

- If we chose \(n-1 \) pieces we could fit with 0 error
 - Not a fair measure of data fit

- Add a penalty of \(C \) times the number of pieces to the error to get a total penalty

- How do we compute a solution with the smallest possible total penalty?
Segmented Least Squares

- Recursive idea
 - If we knew the point p_j where the last line segment began then we could solve the problem optimally for points p_1, \ldots, p_j and combine that with the last segment to get a global optimal solution.
Recursive idea

If we knew the point p_j where the last line segment began then we could solve the problem optimally for points p_1, \ldots, p_j and combine that with the last segment to get a global optimal solution.

Let $\text{OPT}(j)$ be the optimal penalty for points $\{p_1, \ldots, p_j\}$.
Segmented Least Squares

- Recursive idea
 - If we knew the point p_j where the last line segment began then we could solve the problem optimally for points $p_1,...,p_j$ and combine that with the last segment to get a global optimal solution
 - Let $OPT(j)$ be the optimal penalty for points $\{p_1,...,p_j\}$
 - Total penalty for this solution would be $\text{Error}(\{p_j,...,p_n\}) + C + OPT(j-1)$
Segmented Least Squares
Segmented Least Squares

- Recursive idea
 - We don’t know which point is \(p_j \)
 - But we do know that \(1 \leq j \leq n \)
 - The optimal choice will simply be the best among these possibilities
Segmented Least Squares

- Recursive idea
 - We don’t know which point is p_j
 - But we do know that $1 \leq j \leq n$
 - The optimal choice will simply be the best among these possibilities

- Therefore

$$\text{OPT}(n) = \min_{1 \leq j \leq n} \{ \text{Error}([p_j, \ldots, p_n]) + C + \text{OPT}(j-1) \}$$
Dynamic Programming Solution

SegmentedLeastSquares(n)
array \text{OPT}[0..n]

\text{OPT}[0] \leftarrow 0
for \ i=1 \ to \ n
 \text{OPT}[i] \leftarrow \text{Error}\{(p_1,\ldots,p_i)\}+C

for \ j=2 \ to \ i-1
 \text{e} \leftarrow \text{Error}\{(p_j,\ldots,p_i)\}+C+\text{OPT}[j-1]
 if \ \text{e} < \text{OPT}[i] \ then
 \text{OPT}[i] \leftarrow \text{e}
endfor
endfor
return(\text{OPT}[n])
Dynamic Programming Solution

SegmentedLeastSquares(n)
array OPT[0..n]
array Begin[1..n]
OPT[0]←0
for i=1 to n
 OPT[i]←Error{(p_1,...,p_i)}+C
 Begin[i]←1
 for j=2 to i-1
 e←Error{(p_j,...,p_i)}+C+OPT[j-1]
 if e < OPT[i] then
 OPT[i] ← e
 Begin[i] ← j
 endif
 endfor
endfor
return(OPT[n])
Dynamic Programming Solution

SegmentedLeastSquares(n)
array OPT[0..n]
array Begin[1..n]
OPT[0]←0
for i=1 to n
 OPT[i]←Error{(p_1,…,p_i)}+C
 Begin[i]←1
 for j=2 to i-1
 e←Error{(p_j,…,p_i)}+C+OPT[j-1]
 if e < OPT[i] then
 OPT[i] ← e
 Begin[i]←j
 endif
 endfor
endfor
return(OPT[n])

FindSegments
i←n
S←∅
while i > 1 do
 compute Line({p_{Begin[i]},…,p_i})
 output (p_{Begin[i]},p_i), Line
 i←Begin[i]
endwhile
Knapsack (Subset-Sum) Problem

- **Given:**
 - integer W (knapsack size)
 - n object sizes x_1, x_2, \ldots, x_n

- **Find:**
 - Subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} x_i \leq W$
 but $\sum_{i \in S} x_i$ is as large as possible
Recursive Algorithm

Let $K(n, W)$ denote the problem to solve for W and x_1, x_2, \ldots, x_n

For $n > 0$,
- The optimal solution for $K(n, W)$ is the better of the optimal solution for either
 $K(n-1, W)$ or $x_n + K(n-1, W-x_n)$
Recursive Algorithm

- Let $K(n,W)$ denote the problem to solve for W and x_1, x_2, \ldots, x_n
- For $n > 0$,
 - The optimal solution for $K(n,W)$ is the better of the optimal solution for either $K(n-1,W)$ or $x_n + K(n-1,W-x_n)$
- For $n = 0$
 - $K(0,W)$ has a trivial solution of an empty set S with weight 0
Recursive calls

- Recursive calls on list ..., 3, 4, 7
Common Sub-problems

- Only sub-problems are $K(i,w)$ for
 - $i = 0, 1, ..., n$
 - $w = 0, 1, ..., W$

- Dynamic programming solution
 - Table entry for each $K(i,w)$
 - OPT - value of optimal soln for first i objects and weight w
 - belong flag - is x_i a part of this solution?
Common Sub-problems

- Only sub-problems are $K(i, w)$ for
 - $i = 0, 1, ..., n$
 - $w = 0, 1, ..., W$

- Dynamic programming solution
 - Table entry for each $K(i, w)$
 - OPT - value of optimal soln for first i objects and weight w
 - $belong$ flag - is x_i a part of this solution?
 - Initialize $OPT[0, w]$ for $w=0, ..., W$
 - Compute all $OPT[i, \ast]$ from $OPT[i-1, \ast]$ for $i > 0$
Dynamic Knapsack Algorithm

\[
\begin{array}{c}
\text{for } w=0 \text{ to } W; \quad \text{OPT}[0,w] \leftarrow 0; \quad \text{end for} \\
\text{for } i=1 \text{ to } n \text{ do} \\
\quad \text{for } w=0 \text{ to } W \text{ do} \\
\quad \quad \text{OPT}[i,w] \leftarrow \text{OPT}[i-1,w] \\
\quad \quad \text{belong}[i,w] \leftarrow 0 \\
\quad \quad \text{if } w \geq x_i \text{ then} \\
\quad \quad \quad \text{val} \leftarrow x_i + \text{OPT}[i-1,w-x_i] \\
\quad \quad \quad \text{if } \text{val} > \text{OPT}[i,w] \text{ then} \\
\quad \quad \quad \quad \text{OPT}[i,w] \leftarrow \text{val} \\
\quad \quad \quad \quad \text{belong}[i,w] \leftarrow 1 \\
\quad \quad \text{end if} \\
\quad \quad \text{end if} \\
\quad \text{end for} \\
\text{end for} \\
\text{return(OPT[n,W])}
\end{array}
\]

Time O(nW)
Sample execution on 2, 3, 4, 7 with $W=15$
Saving Space

- To compute the value \(\text{OPT} \) of the solution only need to keep the last two rows of \(\text{OPT} \) at each step

- What about determining the set \(S \)?
 - Follow the \text{belong} flags \(O(n) \) time
 - What about space?
Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm

- Show that the number of different values of parameters in the recursive algorithm is “small”
 - e.g., bounded by a low-degree polynomial

- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.
RNA Secondary Structure: Dynamic Programming on Intervals

- RNA: sequence of bases
 - String over alphabet \{A, C, G, U\}

- RNA folds and sticks to itself like a zipper
 - A bonds to U
 - C bonds to G
 - Bends can’t be sharp
 - No twisting or criss-crossing

- How the bonds line up is called the RNA secondary structure
ACGAUACUGCAAAUCUCUCUGUGACGAACCCAGCGAGGUGUA
Another view of RNA Secondary Structure

A---C---A---U---C---U---G---U---G---A---C---G---A---U---G---U---A

No crossing
RNA Secondary Structure

- **Input:** String $x_1 \ldots x_n \in \{A,C,G,U\}^*$
- **Output:** Maximum size set S of pairs (i,j) such that
 - $\{x_i, x_j\} = \{A, U\}$ or $\{x_i, x_j\} = \{C, G\}$
 - The pairs in S form a matching
 - $i < j - 4$ (no sharp bends)
 - No crossing pairs
 - If (i,j) and (k,l) are in S then it is not the case that they cross as in $i < k < j < l$
Recursion Solution

- Try all possible matches for the last base

\[
\text{OPT}(1..j) = \max(\text{OPT}(1..j-1), 1 + \max_{k=1..j-5} (\text{OPT}(1..k-1) + \text{OPT}(k+1..j-1)))
\]

\(x_k\) matches \(x_j\)
Recursion Solution

- Try all possible matches for the last base

\[\text{OPT}(1..j) = \max(\text{OPT}(1..j-1), 1 + \max_{k=1..j-5} (\text{OPT}(1..k-1) + \text{OPT}(k+1..j-1))) \]

- \(x_k \) matches \(x_j \)
Recursion Solution

- Try all possible matches for the last base

\[
OPT(1..j) = \max \{ OPT(1..k-1), 1 + \max_{k=1..j-5} (OPT(1..k-1) + OPT(k+1..j-1)) \}
\]

- \(x_k\) matches \(x_j\)
Recursion Solution

- Try all possible matches for the last base

\[OPT(1..j) = \max (OPT(1..j-1), 1 + \max_{k=1..j-5} (OPT(1..k-1) + OPT(k+1..j-1))) \]

- \(x_k \) matches \(x_j \)
- Doesn’t start at 1
Recursion Solution

- Try all possible matches for the last base

$$OPT(1..k-1)$$

$$OPT(k+1..j-1)$$

$$OPT(1..j) = \max(\max_{1..j-5} (OPT(1..k-1) + OPT(k+1..j-1)), 1 + \max_{1..j-5} (OPT(1..k-1) + OPT(k+1..j-1)))$$

General form:

$$OPT(i..j) = \max(\max_{1..j-5} (OPT(i..k-1) + OPT(k+1..j-1)), 1 + \max_{1..j-5} (OPT(i..k-1) + OPT(k+1..j-1)))$$
RNA Secondary Structure

- 2D Array $\text{OPT}(i,j)$ for $i \leq j$ represents optimal # of matches entirely for segment $i..j$
- For $j-i \leq 4$ set $\text{OPT}(i,j)=0$ (no sharp bends)
- Then compute $\text{OPT}(i,j)$ values when $j-i=5,6,...,n-1$ in turn using recurrence.
- Return $\text{OPT}(1,n)$
- Total of $O(n^3)$ time
- Can also record matches along the way to produce S
 - Similar polynomial-time algorithm for other problems
 - Context-Free Language recognition
 - Optimal matrix products, etc.
 - All use dynamic programming over intervals
Sequence Alignment: Edit Distance

Given:
- Two strings of characters $A = a_1 \ a_2 \ ... \ a_n$ and $B = b_1 \ b_2 \ ... \ b_m$

Find:
- The minimum number of edit steps needed to transform A into B where an edit can be:
 - insert a single character
 - delete a single character
 - substitute one character by another
Applications

- "diff" utility – where do two files differ
- Version control & patch distribution – save/send only changes
- Molecular biology
 - Similar sequences often have similar origin and function
 - Similarity often recognizable despite millions or billions of years of evolutionary divergence
Sequence Alignment vs Edit Distance

- **Sequence Alignment**
 - Insert corresponds to aligning with a “—” in the first string
 - Cost δ (in our case 1)
 - Delete corresponds to aligning with a “—” in the second string
 - Cost δ (in our case 1)
 - Replacement of an a by a b corresponds to a mismatch
 - Cost α_{ab} (in our case 1 if $a \neq b$ and 0 if $a = b$)

- In Computational Biology this alignment algorithm is attributed to Smith & Waterman
GenBank and WGS Statistics

Bases

Sequences
Recursive Solution

- **Sub-problems:** Edit distance problems for all prefixes of A and B that don’t include all of both A and B

- Let $D(i,j)$ be the number of edits required to transform $a_1 \ a_2 ... \ a_i$ into $b_1 \ b_2 ... \ b_j$

- Clearly $D(0,0)=0$
Computing $D(n,m)$

- Imagine how best sequence handles the last characters a_n and b_m
- If best sequence of operations
 - deletes a_n then $D(n,m) = D(n-1,m) + 1$
 - inserts b_m then $D(n,m) = D(n,m-1) + 1$
 - replaces a_n by b_m then $D(n,m) = D(n-1,m-1) + 1$
 - matches a_n and b_m then $D(n,m) = D(n-1,m-1)$
Recursive algorithm \(D(n,m) \)

\[
\text{if } n=0 \text{ then} \\
\quad \text{return } (m) \\
\text{elseif } m=0 \text{ then} \\
\quad \text{return}(n) \\
\text{else} \\
\quad \text{if } a_n=b_m \text{ then} \\
\quad \quad \text{replace-cost } \leftarrow 0 \\
\quad \text{endif} \\
\quad \text{return}(\min\{D(n-1, m) + 1, \\
\quad D(n, m-1) + 1, \\
\quad D(n-1, m-1) + \text{replace-cost}\}) \\
\]

\(\text{cost of substitution of } a_n \text{ by } b_m \) (if used)
for \(j = 0 \) to \(m \); \(D(0,j) \leftarrow j \); endfor
for \(i = 1 \) to \(n \); \(D(i,0) \leftarrow i \); endfor
for \(i = 1 \) to \(n \)
for \(j = 1 \) to \(m \)
 if \(a_i = b_j \) then
 replace-cost \(\leftarrow 0 \)
 else
 replace-cost \(\leftarrow 1 \)
 endif
D(i,j) \(\leftarrow \min \{ D(i-1, j) + 1, \ D(i, j-1) + 1, \ D(i-1, j-1) + \text{replace-cost} \} \)
endfor
endfor
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8

G A G T T A

G A C A T T G

A G A C A T T G

81
Example run with AGACATTG and GAGTTTA
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Example run with
AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment

```
A  G  A  C  A  T  T  G
_   G  A  G  _  T  T  A
```
Saving Space

- To compute the distance values we only need the last two rows (or columns)
 - \(O(\min(m,n))\) space

- To compute the alignment/sequence of operations
 - seem to need to store all \(O(mn)\) pointers/arrow colors

- Nifty divide and conquer variant that allows one to do this in \(O(\min(m,n))\) space and retain \(O(mn)\) time
 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. \(m\) and \(n\) are lengths of genes so a few thousand characters
 - Researchers want all alignments that are close to optimal
 - Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
 - Ideas are neat, though
Saving space

- Alignment corresponds to a path through the table from lower right to upper left
 - Must pass through the middle column
- Recursively compute the entries for the middle column from the left
 - If we knew the cost of completing each then we could figure out where the path crossed
- Problem
 - There are n possible strings to start from.
- Solution
 - Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings!
 - Can reuse the storage on the left when solving the right hand problem
Shortest paths with negative cost edges (Bellman-Ford)

- Dijkstra’s algorithm failed with negative-cost edges
 - What can we do in this case?
 - Negative-cost cycles could result in shortest paths with length $-\infty$

- Suppose no negative-cost cycles in G
 - Shortest path from s to t has at most $n-1$ edges
 - If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can’t have negative cost
Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from \(s\) to \(t\) based on the # of edges in the path
- Let \(\text{Cost}(s, t, i)\) = cost of minimum-length path from \(s\) to \(t\) using up to \(i\) hops.
 - \(\text{Cost}(v, t, 0) = \begin{cases} 0 & \text{if } v = t \\ \infty & \text{otherwise} \end{cases}\)
 - \(\text{Cost}(v, t, i) = \min\{\text{Cost}(v, t, i-1), \min_{(v, w) \in E}(c_{vw} + \text{Cost}(w, t, i-1))\}\)
Bellman-Ford

- Observe that the recursion for $\text{Cost}(s,t,i)$ doesn't change t
 - Only store an entry for each v and i
 - Termed $OPT(v,i)$ in the text
- Also observe that to compute $OPT(*,i)$ we only need $OPT(*,i-1)$
 - Can store a current and previous copy in $O(n)$ space.
Bellman-Ford

ShortestPath(G,s,t)
 for all \(v \in V \)
 \(\text{OPT}[v] \leftarrow \infty \)
 \(\text{OPT}[t] \leftarrow 0 \)
 for \(i=1 \) to \(n-1 \) do
 for all \(v \in V \) do
 \(\text{OPT}'[v] \leftarrow \min_{(v,w) \in E} (c_{vw} + \text{OPT}[w]) \)
 for all \(v \in V \) do
 \(\text{OPT}[v] \leftarrow \min(\text{OPT}'[v], \text{OPT}[v]) \)
 return \(\text{OPT}[s] \)

\(O(mn) \) time
Negative cycles

Claim: There is a negative-cost cycle that can reach t iff for some vertex $v \in V$, $\text{Cost}(v,t,n) < \text{Cost}(v,t,n-1)$

Proof:
- We already know that if there aren’t any then we only need paths of length up to $n-1$
- For the other direction
 - The recurrence computes $\text{Cost}(v,t,i)$ correctly for any number of hops i
 - The recurrence reaches a fixed point if for every $v \in V$, $\text{Cost}(v,t,i) = \text{Cost}(v,t,i-1)$
 - A negative-cost cycle means that eventually some $\text{Cost}(v,t,i)$ gets smaller than any given bound
 - Can’t have a –ve cost cycle if for every $v \in V$, $\text{Cost}(v,t,n) = \text{Cost}(v,t,n-1)$
Last details

- Can run algorithm and stop early if the OPT and OPT’ arrays are ever equal
 - Even better, one can update only neighbors v of vertices w with $OPT'[w] \neq OPT[w]$
- Can store a successor pointer when we compute OPT
 - Homework assignment

- By running for step n we can find some vertex v on a negative cycle and use the successor pointers to find the cycle
Bellman-Ford
Bellman-Ford
Bellman-Ford
Bellman-Ford

The Bellman-Ford algorithm is used to find the shortest paths in a weighted graph, even when there are negative weight edges.

The diagram shows a graph with vertices labeled 0, 4, 2, -2, 7, and 7 connected by edges with weights indicated.

The algorithm iteratively relaxes the edges in the graph until the shortest paths are found.
Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
• Update distances in reverse order of topological sort
• Only one pass through vertices required
• $O(n+m)$ time