CSE 421: Introduction to Algorithms

Divide and Conquer

Paul Beame
Algorithm Design Techniques

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is \textbf{at most a constant fraction} of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)
Fast exponentiation

- **Power(a,n)**
 - **Input**: integer \(n \) and number \(a \)
 - **Output**: \(a^n \)

- **Obvious algorithm**
 - \(n-1 \) multiplications

- **Observation**: if \(n \) is even, \(n=2m \), then \(a^n=a^m \cdot a^m \)
Divide & Conquer Algorithm

- **Power(a, n)**
 - if n=0 then return(1)
 - else if n=1 then return(a)
 - else
 - $x \leftarrow \text{Power}(a, \lfloor n/2 \rfloor)$
 - if n is even then
 - return($x \cdot x$)
 - else
 - return($a \cdot x \cdot x$)
Analysis

- Worst-case recurrence
 - $T(n) = T(\lfloor n/2 \rfloor) + 2$ for $n \geq 1$
 - $T(1) = 0$

- Time
 - $T(n) = T(\lfloor n/2 \rfloor) + 2 \leq T(\lfloor n/4 \rfloor) + 2 + 2 \leq \ldots \leq T(1) + 2 + \ldots + 2 = 2 \log_2 n$

- More precise analysis:
 - $T(n) = \lceil \log_2 n \rceil + \# \text{ of 1’s in } n \text{’s binary representation}$
A Practical Application- RSA

- Instead of a^n want $a^n \mod N$
 - $a^{i+j} \mod N = ((a^i \mod N) \cdot (a^j \mod N)) \mod N$
 - same algorithm applies with each $x \cdot y$ replaced by
 - $((x \mod N) \cdot (y \mod N)) \mod N$

- In RSA cryptosystem (widely used for security)
 - need $a^n \mod N$ where a, n, N each typically have 1024 bits
 - Power: at most 2^{1048} multiplies of 1024 bit numbers
 - relatively easy for modern machines
 - Naive algorithm: 2^{1024} multiplies
Binary search for roots (bisection method)

- **Given:**
 - continuous function \(f \) and two points \(a < b \) with \(f(a) \leq 0 \) and \(f(b) > 0 \)

- **Find:**
 - approximation to \(c \) s.t. \(f(c) = 0 \) and \(a < c < b \)
Bisection method

\[\text{Bisection}(a, b, \varepsilon) \]

\[
\begin{align*}
\text{if } (b-a) < \varepsilon & \text{ then} \\
\text{return}(a) & \text{ else} \\
\text{c} \leftarrow (a+b)/2 & \text{ if } f(c) \leq 0 \text{ then} \\
\text{return(Bisection(c,b,\varepsilon))} & \text{ else} \\
\text{return(Bisection(a,c,\varepsilon))}
\end{align*}
\]
Time Analysis

- At each step we halved the size of the interval
- It started at size $b-a$
- It ended at size ε

- # of calls to f is $\log_2 \left(\frac{b-a}{\varepsilon} \right)$
Old favorites

- **Binary search**
 - One subproblem of half size plus one comparison
 - Recurrence $T(n) = T(\lceil n/2 \rceil) + 1$ for $n \geq 2$
 \[
 T(1) = 0
 \]
 - So $T(n)$ is $\lceil \log_2 n \rceil + 1$

- **Mergesort**
 - Two subproblems of half size plus merge cost of $n-1$ comparisons
 - Recurrence $T(n) \leq 2T(\lceil n/2 \rceil) + n-1$ for $n \geq 2$
 \[
 T(1) = 0
 \]
 - Roughly n comparisons at each of $\log_2 n$ levels of recursion
 - So $T(n)$ is roughly $2n \log_2 n$
Euclidean Closest Pair

- Given a set P of n points p_1, \ldots, p_n with real-valued coordinates
- Find the pair of points $p_i, p_j \in P$ such that the Euclidean distance $d(p_i, p_j)$ is minimized
- $\Theta(n^2)$ possible pairs
- In one dimension: easy $O(n \log n)$ algorithm
 - Sort the points
 - Compare consecutive elements in the sorted list
- What about points in the plane?
Closest Pair in the Plane

No single direction along which one can sort points to guarantee success!
Closest Pair In the Plane: Divide and Conquer

- Sort the points by their x coordinates
- Split the points into two sets of $n/2$ points L and R by x coordinate
- Recursively compute
 - closest pair of points in L, (p_L, q_L)
 - closest pair of points in R, (p_R, q_R)
- Let $\delta = \min\{d(p_L, q_L), d(p_R, q_R)\}$ and let (p, q) be the pair of points that has distance δ
Closest Pair In the Plane: Divide and Conquer

- Sort the points by their x coordinates
- Split the points into two sets of $n/2$ points L and R by x coordinate
- Recursively compute
 - closest pair of points in L, (p_L, q_L)
 - closest pair of points in R, (p_R, q_R)
- Let $\delta = \min\{d(p_L, q_L), d(p_R, q_R)\}$ and let (p, q) be the pair of points that has distance δ
- But this may not be enough
 - Closest pair of points may involve one point from L and the other from R!
A clever geometric idea

Any pair of points \(p \in L \) and \(q \in R \) with \(d(p,q) < \delta \) must lie in band.
A clever geometric idea

Any pair of points $p \in L$ and $q \in R$ with $d(p, q) < \delta$ must lie in band

No two points can be in the same green box
A clever geometric idea

Any pair of points $p \in L$ and $q \in R$ with $d(p,q) < \delta$ must lie in band

No two points can be in the same green box

Only need to check pairs of points up to 2 rows apart - At most a constant # of other points!
Closest Pair Recombining

- Sort points by y coordinate ahead of time

- On recombination only compare each point in δ-band of $L \cup R$ to the 11 points in δ-band of $L \cup R$ above it in the y sorted order
 - If any of those distances is better than δ replace (p,q) by the best of those pairs

- $O(n \log n)$ for x and y sorting at start

- Two recursive calls on problems on half size

- $O(n)$ recombination

- Total $O(n \log n)$
Sometimes two sub-problems aren’t enough

- More general divide and conquer
 - You’ve broken the problem into a different sub-problems
 - Each has size at most \(n/b \)
 - The cost of the break-up and recombining the sub-problem solutions is \(O(n^k) \)

- Recurrence
 - \(T(n) \leq a \cdot T(n/b) + c \cdot n^k \)
Master Divide and Conquer Recurrence

- If $T(n) \leq a \cdot T(n/b) + c \cdot n^k$ for $n > b$ then
 - if $a > b^k$ then $T(n)$ is $\Theta(n^{\log_b a})$
 - if $a < b^k$ then $T(n)$ is $\Theta(n^k)$
 - if $a = b^k$ then $T(n)$ is $\Theta(n^k \log n)$

- Works even if it is $\lceil n/b \rceil$ instead of n/b.
Proving Master recurrence

Problem size

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^k \]

probs

\[T(1) = c \]
Proving Master recurrence

Problem size

\[T(n) = a \cdot T(n/b) + c \cdot n^k \quad \text{# probs} \]

Diagram:

- \(T(n) \) at the root
- \(a \cdot T(n/b) \) at each level
- \(c \cdot n^k \) at each level
- \(T(1) = c \) at the leaf level
Proving Master recurrence

Problem size

\[T(n) = a \cdot T(n/b) + c \cdot n^k \] # probs

\[T(1) = c \]

Cost

\[c \cdot n^k \]

\[c \cdot a \cdot n^k / b^k \]

\[c \cdot a^2 \cdot n^k / b^{2k} \]

\[= c \cdot n^k (a/b^k)^2 \]

\[c \cdot n^k (a/b^k)^d \]

= \[c \cdot a^d \]
Geometric Series

- \[S = t + tr + tr^2 + \ldots + tr^{n-1} \]
- \[r \cdot S = tr + tr^2 + \ldots + tr^{n-1} + tr^n \]
- \[(r-1)S = tr^n - t \]
- so \[S = t \frac{r^n - 1}{r-1} \] if \(r \neq 1 \).

Simple rule

- If \(r \neq 1 \) then \(S \) is a constant times largest term in series
Total Cost

- Geometric series
 - ratio \(\frac{a}{b^k}\)
 - \(d+1=\log_b n + 1\) terms
 - first term \(cn^k\), last term \(ca^d\)
 - If \(\frac{a}{b^k}=1\)
 - all terms are equal \(T(n)\) is \(\Theta(n^k \log n)\)
 - If \(\frac{a}{b^k}<1\)
 - first term is largest \(T(n)\) is \(\Theta(n^k)\)
 - If \(\frac{a}{b^k}>1\)
 - last term is largest \(T(n)\) is \(\Theta(a^d) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a})\)
 (To see this take \(\log_b\) of both sides)
Multiplying Matrices

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix} \times \begin{bmatrix}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & \cdots & a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & \cdots & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \cdots & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & \cdots & a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]

- n^3 multiplications, $n^3 - n^2$ additions
Multiplying Matrices

for \(i = 1 \) to \(n \)
 for \(j = 1 \) to \(n \)
 \(C[i,j] \leftarrow 0 \)
 for \(k = 1 \) to \(n \)
 \(C[i,j] = C[i,j] + A[i,k] \cdot B[k,j] \)
 endfor
 endfor
endfor
Multiplying Matrices

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

=

\[
\begin{bmatrix}
a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
 a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
 a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
 a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22} \\
 b_{31} & b_{32} \\
 b_{41} & b_{42}
\end{bmatrix}
= \begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
= \begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]
Simple Divide and Conquer

\[
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

= \begin{pmatrix}
A_{11}B_{11}+A_{12}B_{21} & A_{11}B_{12}+A_{12}B_{22} \\
A_{21}B_{11}+A_{22}B_{21} & A_{21}B_{12}+A_{22}B_{22}
\end{pmatrix}

- \quad T(n) = 8T(n/2) + 4(n/2)^2 = 8T(n/2) + n^2

- \quad 8 > 2^2 \text{ so } T(n) \text{ is } \Theta(n^{\log_b 8}) = \Theta(n^{\log_2 8}) = \Theta(n^3)
Strassen’s Divide and Conquer Algorithm

- Strassen’s algorithm
 - Multiply 2×2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)

- $T(n) = 7 \cdot T(n/2) + cn^2$
 - $7 > 2^2$ so $T(n)$ is $\Theta(n^{\log_2 7})$ which is $O(n^{2.81...})$

- Fastest algorithms theoretically use $O(n^{2.373})$ time
 - not practical but Strassen’s is practical provided calculations are exact and we stop recursion when matrix has size somewhere between 10 and 100
The algorithm

\[P_1 \leftarrow A_{12}(B_{11} + B_{21}); \quad P_2 \leftarrow A_{21}(B_{12} + B_{22}) \]

\[P_3 \leftarrow (A_{11} - A_{12})B_{11}; \quad P_4 \leftarrow (A_{22} - A_{21})B_{22} \]

\[P_5 \leftarrow (A_{22} - A_{12})(B_{21} - B_{22}) \]

\[P_6 \leftarrow (A_{11} - A_{21})(B_{12} - B_{11}) \]

\[P_7 \leftarrow (A_{21} - A_{12})(B_{11} + B_{22}) \]

\[C_{11} \leftarrow P_1 + P_3; \quad C_{12} \leftarrow P_2 + P_3 + P_6 - P_7 \]

\[C_{21} \leftarrow P_1 + P_4 + P_5 + P_7; \quad C_{22} \leftarrow P_2 + P_4 \]
Another Divide & Conquer Example: Multiplying Faster

- If you analyze our usual grade school algorithm for multiplying numbers
 - $\Theta(n^2)$ time
 - On real machines each “digit” is, e.g., 64 bits long but still get $\Theta(n^2)$ running time with this algorithm when run on n-bit multiplication

- We can do better!
 - We’ll describe the basic ideas by multiplying polynomials rather than integers
 - Advantage is we don’t get confused by worrying about carries at first
Notes on Polynomials

- These are just formal sequences of coefficients
 - when we show something multiplied by x^k it just means shifted k places to the left – basically no work

Usual polynomial multiplication

\[
\begin{align*}
4x^2 + 2x + 2 \\
x^2 - 3x + 1 \\
\hline
4x^2 + 2x + 2 \\
-12x^3 - 6x^2 - 6x \\
4x^4 + 2x^3 + 2x^2 \\
\hline
4x^4 - 10x^3 + 0x^2 - 4x + 2
\end{align*}
\]
Polynomial Multiplication

Given:
- Degree $n-1$ polynomials P and Q
 - $P = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-2} x^{n-2} + a_{n-1} x^{n-1}$
 - $Q = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-2} x^{n-2} + b_{n-1} x^{n-1}$

Compute:
- Degree $2n-2$ Polynomial PQ
 - $PQ = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2$
 $+ \ldots + (a_{n-2} b_{n-1} + a_{n-1} b_{n-2}) x^{2n-3} + a_{n-1} b_{n-1} x^{2n-2}$

Obvious Algorithm:
- Compute all $a_i b_j$ and collect terms
- $\Theta(n^2)$ time
Naive Divide and Conquer

- Assume $n=2^k$
 - $P = (a_0 + a_1 x + a_2 x^2 + \ldots + a_{k-2} x^{k-2} + a_{k-1} x^{k-1}) + (a_k + a_{k+1} x + \ldots + a_{n-2} x^{k-2} + a_{n-1} x^{k-1}) x^k$
 - $= P_0 + P_1 x^k$ where P_0 and P_1 are degree $k-1$ polynomials
 - Similarly $Q = Q_0 + Q_1 x^k$
 - $P \cdot Q = (P_0 + P_1 x^k)(Q_0 + Q_1 x^k)$
 - $= P_0 Q_0 + (P_1 Q_0 + P_0 Q_1) x^k + P_1 Q_1 x^{2k}$

- 4 sub-problems of size $k=n/2$ plus linear combining
 - $T(n)=4 \cdot T(n/2)+cn$ Solution $T(n) = \Theta(n^2)$
Karatsuba’s Algorithm

- A better way to compute the terms
 - Compute
 - \(A \leftarrow P_0Q_0 \)
 - \(B \leftarrow P_1Q_1 \)
 - \(C \leftarrow (P_0+P_1)(Q_0+Q_1) = P_0Q_0 + P_1Q_0 + P_0Q_1 + P_1Q_1 \)
 - Then
 - \(P_0Q_1 + P_1Q_0 = C - A - B \)
 - So \(PQ = A + (C - A - B)x^k + Bx^{2k} \)
 - 3 sub-problems of size \(n/2 \) plus \(O(n) \) work
 - \(T(n) = 3T(n/2) + cn \)
 - \(T(n) = O(n^\alpha) \) where \(\alpha = \log_23 = 1.59... \)
Karatsuba: Details

\texttt{PolyMul(P, Q):}

// \texttt{P, Q} are length \texttt{n =2k} vectors, with \texttt{P[i]}, \texttt{Q[i]} being
// the coefficient of \texttt{x^i} in polynomials \texttt{P}, \texttt{Q} respectively.
// Let \texttt{P0} be elements \texttt{0..k-1} of \texttt{P}; \texttt{P1} be elements \texttt{k..n-1}
// \texttt{Qzero, Qone} : similar

\textbf{If} \texttt{n=1} then \texttt{Return(P[0]*Q[0])} \textbf{else}

\texttt{A \leftarrow PolyMul(P0, Q0);} \quad // result is a \texttt{(2k-1)}-vector
\texttt{B \leftarrow PolyMul(P1, Q1);} \quad // ditto
\texttt{Psum \leftarrow P0 + P1;} \quad // add corresponding elements
\texttt{Qsum \leftarrow Q0 + Q1;} \quad // ditto
\texttt{C \leftarrow polyMul(Psum, Qsum);} \quad // another \texttt{(2k-1)}-vector
\texttt{Mid \leftarrow C – A – B;} \quad // subtract correspond elements
\texttt{R \leftarrow A + Shift(Mid, n/2) + Shift(B,n)} \quad // a \texttt{(2n-1)}-vector
\texttt{Return(R);}
Multiplication

Polynomials
- Naïve: $\Theta(n^2)$
- Karatsuba: $\Theta(n^{1.59\ldots})$
- Best known: $\Theta(n \log n)$
 - "Fast Fourier Transform"
 - FFT widely used for signal processing

Integers
- Similar, but some ugly details re: carries, etc. due to Schonhage-Strassen in 1971 gives $\Theta(n \log n \log \log n)$
- Improvement in 2007 due to Furer gives $\Theta(n \log n 2^{\log^* n})$
- Used in practice in symbolic manipulation systems like Maple
Hints towards FFT: Interpolation

Given set of values at 5 points
Hints towards FFT: Interpolation

Given set of values at 5 points
Can find unique degree 4 polynomial going through these points
Multiplying Polynomials by Evaluation & Interpolation

- Any degree \(n-1 \) polynomial \(R(y) \) is determined by \(R(y_0), \ldots, R(y_{n-1}) \) for any \(n \) distinct \(y_0, \ldots, y_{n-1} \)

- To compute \(PQ \) (assume degree at most \(n/2-1 \))
 - Evaluate \(P(y_0), \ldots, P(y_{n-1}) \)
 - Evaluate \(Q(y_0), \ldots, Q(y_{n-1}) \)
 - Multiply values \(P(y_i)Q(y_i) \) for \(i=0, \ldots, n-1 \)
 - Interpolate to recover \(PQ \)
Interpolation

- Given values of degree **n-1** polynomial \(R \) at **n** distinct points \(y_0, \ldots, y_{n-1} \)
 - \(R(y_0), \ldots, R(y_{n-1}) \)
- Compute coefficients \(c_0, \ldots, c_{n-1} \) such that
 - \(R(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{n-1} x^{n-1} \)
- System of linear equations in \(c_0, \ldots, c_{n-1} \)
 \[
 \begin{align*}
 c_0 + & c_1 y_0 + c_2 y_0^2 + \ldots + c_{n-1} y_0^{n-1} = R(y_0) \quad \text{known} \\
 c_0 + & c_1 y_1 + c_2 y_1^2 + \ldots + c_{n-1} y_1^{n-1} = R(y_1) \\
 \ldots & \\
 c_0 + & c_1 y_{n-1} + c_2 y_{n-1}^2 + \ldots + c_{n-1} y_{n-1}^{n-1} = R(y_{n-1}) \quad \text{unknown}
 \end{align*}
 \]
Interpolation:
n equations in *n* unknowns

- Matrix form of the linear system

\[
\begin{pmatrix}
1 & y_0 & y_0^2 & \ldots & y_0^{n-1} \\
1 & y_1 & y_1^2 & \ldots & y_1^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & y_{n-1} & y_{n-1}^2 & \ldots & y_{n-1}^{n-1}
\end{pmatrix}
\begin{pmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
R(y_0) \\
R(y_1) \\
\vdots \\
R(y_{n-1})
\end{pmatrix}
\]

- **Fact:** Determinant of the matrix is \(\prod_{i<j} (y_i - y_j) \) which is not 0 since points are distinct
 - System has a unique solution \(c_0, \ldots, c_{n-1} \)
Hints towards FFT: Evaluation & Interpolation

P: \(a_0, a_1, \ldots, a_{n/2-1}\)
Q: \(b_0, b_1, \ldots, b_{n/2-1}\)

\[R(y_0) \leftarrow P(y_0) \cdot Q(y_0) \]
\[R(y_1) \leftarrow P(y_1) \cdot Q(y_1) \]
\[\cdots \]
\[R(y_{n-1}) \leftarrow P(y_{n-1}) \cdot Q(y_{n-1}) \]

ordinary polynomial multiplication \(\Theta(n^2)\)

\[c_k \leftarrow \sum_{i+j=k} a_i b_j \]

evaluation at \(y_0, \ldots, y_{n-1}\)
interpolation from \(y_0, \ldots, y_{n-1}\)

point-wise multiplication of numbers \(O(n)\)

\(\sum\)

\(\Theta\)
Karatsuba’s algorithm and evaluation and interpolation

- Strassen gave a way of doing 2×2 matrix multiplies with fewer multiplications.
- Karatsuba’s algorithm can be thought of as a way of multiplying degree 1 polynomials (which have 2 coefficients) using fewer multiplications.
 - $PQ = (P_0 + P_1 z)(Q_0 + Q_1 z)$
 - $= P_0 Q_0 + (P_1 Q_0 + P_0 Q_1) z + P_1 Q_1 z^2$
- Evaluate at 0, 1, -1 (Could also use other points)
 - $A = P(0)Q(0) = P_0 Q_0$
 - $C = P(1)Q(1) = (P_0 + P_1)(Q_0 + Q_1)$
 - $D = P(-1)Q(-1) = (P_0 - P_1)(Q_0 - Q_1)$
- Interpolating, Karatsuba’s $\text{Mid} = (C - D)/2$ and $B = (C + D)/2 - A$
Evaluation at Special Points

- Evaluation of polynomial at 1 point takes $O(n)$ time
 - So $2n$ points (naively) takes $O(n^2)$—no savings
 - But the algorithm works no matter what the points are...

- So…choose points that are related to each other so that evaluation problems can share subproblems
The key idea: Evaluate at related points

- \(P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + ... + a_{n-1} x^{n-1} \)
 \[= a_0 + a_2 x^2 + a_4 x^4 + ... + a_{n-2} x^{n-2} \]
 \[+ a_1 x + a_3 x^3 + a_5 x^5 + ... + a_{n-1} x^{n-1} \]
 \[= P_{\text{even}}(x^2) + x P_{\text{odd}}(x^2) \]

- \(P(-x) = a_0 - a_1 x + a_2 x^2 - a_3 x^3 + a_4 x^4 - ... - a_{n-1} x^{n-1} \)
 \[= a_0 + a_2 x^2 + a_4 x^4 + ... + a_{n-2} x^{n-2} \]
 \[- (a_1 x + a_3 x^3 + a_5 x^5 + ... + a_{n-1} x^{n-1}) \]
 \[= P_{\text{even}}(x^2) - x P_{\text{odd}}(x^2) \]

where \(P_{\text{even}}(z) = a_0 + a_2 z + a_4 z^2 + ... + a_{n-2} z^{n/2-1} \)
and \(P_{\text{odd}}(z) = a_1 + a_3 z + a_5 z^2 + ... + a_{n-1} z^{n/2-1} \)
The key idea: Evaluate at related points

- So… if we have half the points as negatives of the other half
 - i.e., \(y_{n/2} = -y_0, \ y_{n/2+1} = -y_1, \ldots, y_{n-1} = -y_{n/2-1} \)

then we can reduce the size \(n \) problem of evaluating degree \(n-1 \) polynomial \(P \) at \(n \) points to evaluating 2 degree \(n/2 - 1 \) polynomials \(P_{\text{even}} \) and \(P_{\text{odd}} \) at \(n/2 \) points \(y_0^2, \ldots, y_{n/2-1}^2 \) and recombine answers with \(O(1) \) extra work per point.
The key idea:
Evaluate at related points

- So… if we have half the points as negatives of the other half
 - i.e., \(y_{n/2} = -y_0, \ y_{n/2+1} = -y_1, \ldots, y_{n-1} = -y_{n/2-1} \)

then we can reduce the size \(n \) problem of evaluating degree \(n-1 \) polynomial \(P \) at \(n \) points to evaluating 2 degree \(n/2 - 1 \) polynomials \(P_{\text{even}} \) and \(P_{\text{odd}} \) at \(n/2 \) points \(y_0^2, \ldots, y_{n/2-1}^2 \) and recombine answers with \(O(1) \) extra work per point

- But to use this idea recursively we need half of \(y_0^2, \ldots, y_{n/2-1}^2 \) to be negatives of the other half
The key idea: Evaluate at related points

- So… if we have half the points as negatives of the other half
 - i.e., \(y_{n/2} = -y_0, \ y_{n/2+1} = -y_1, \ldots, y_{n-1} = -y_{n/2-1} \)

then we can reduce the size \(n \) problem of evaluating degree \(n-1 \) polynomial \(P \) at \(n \) points to evaluating 2 degree \(n/2 - 1 \) polynomials \(P_{\text{even}} \) and \(P_{\text{odd}} \) at \(n/2 \) points \(y_0^2, \ldots y_{n/2-1}^2 \) and recombine answers with \(O(1) \) extra work per point

- But to use this idea recursively we need half of \(y_0^2, \ldots y_{n/2-1}^2 \) to be negatives of the other half
 - If \(y_{n/4}^2 = -y_0^2 \), say, then \((y_{n/4}/y_0)^2 = -1 \)
The key idea: Evaluate at related points

- So… if we have half the points as negatives of the other half
 - i.e., \(y_{n/2} = -y_0, y_{n/2+1} = -y_1, \ldots, y_{n-1} = -y_{n/2-1} \)
 then we can reduce the size \(n \) problem of evaluating degree \(n-1 \) polynomial \(P \) at \(n \) points to evaluating 2 degree \(n/2 - 1 \) polynomials \(P_{\text{even}} \) and \(P_{\text{odd}} \) at \(n/2 \) points \(y_0^2, \ldots, y_{n/2-1}^2 \) and recombine answers with \(O(1) \) extra work per point

- But to use this idea recursively we need half of \(y_0^2, \ldots, y_{n/2-1}^2 \) to be negatives of the other half
 - If \(y_{n/4}^2 = -y_0^2 \), say, then \((y_{n/4}/y_0)^2 = -1 \)
 - Motivates use of complex numbers as evaluation points
Complex Numbers

\[i^2 = -1 \]

To multiply complex numbers:
1. add angles
2. multiply lengths
(all length 1 here)

\[e^{\text{fi}} = (a+\text{bi})(c+\text{di}) \]

\[a+\text{bi} = \cos \theta + i \sin \theta = e^{i\theta} \]
\[c+\text{di} = \cos \varphi + i \sin \varphi = e^{i\varphi} \]
\[e^{\text{fi}} = \cos (\theta+\varphi) + i \sin (\theta+\varphi) = e^{i(\theta+\varphi)} \]

\[e^{2\pi i} = 1 \]
\[e^{\pi i} = -1 \]
Primitive nth root of 1

Let $\omega = \omega_n = e^{i \frac{2\pi}{n}}$

$= \cos \left(\frac{2\pi}{n}\right) + i \sin \left(\frac{2\pi}{n}\right)$

$i^2 = -1$

$e^{2\pi i} = 1$
Facts about $\omega = e^{2\pi i / n}$ for even n

- $\omega = e^{2\pi i / n}$ for $i = \sqrt{-1}$
- $\omega^n = 1$
- $\omega^{n/2} = -1$
- $\omega^{n/2+k} = - \omega^k$ for all values of k
- $\omega^2 = e^{2\pi i / m}$ where $m = n/2$
- $\omega^k = \cos(2k\pi/n) + i \sin(2k\pi/n)$ so can compute with powers of ω
- ω^k is a root of $x^n - 1 = (x-1)(x^{n-1} + x^{n-2} + \ldots + 1) = 0$
 but for $k \neq 0$, $\omega^k \neq 1$ so $\omega^{k(n-1)} + \omega^{k(n-2)} + \ldots + 1 = 0$
The key idea for \(n \) even

\[P(\omega) = a_0 + a_1 \omega + a_2 \omega^2 + a_3 \omega^3 + a_4 \omega^4 + \ldots + a_{n-1} \omega^{n-1} \]
\[= a_0 + a_2 \omega^2 + a_4 \omega^4 + \ldots + a_{n-2} \omega^{n-2} \]
\[+ a_1 \omega + a_3 \omega^3 + a_5 \omega^5 + \ldots + a_{n-1} \omega^{n-1} \]
\[= P_{\text{even}}(\omega^2) + \omega P_{\text{odd}}(\omega^2) \]

\[P(-\omega) = a_0 - a_1 \omega + a_2 \omega^2 - a_3 \omega^3 + a_4 \omega^4 - \ldots - a_{n-1} \omega^{n-1} \]
\[= a_0 + a_2 \omega^2 + a_4 \omega^4 + \ldots + a_{n-2} \omega^{n-2} \]
\[- (a_1 \omega + a_3 \omega^3 + a_5 \omega^5 + \ldots + a_{n-1} \omega^{n-1}) \]
\[= P_{\text{even}}(\omega^2) - \omega P_{\text{odd}}(\omega^2) \]

where \(P_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + \ldots + a_{n-2} x^{n/2-1} \)

and \(P_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \ldots + a_{n-1} x^{n/2-1} \)
The recursive idea for \(n \) a power of 2

- **Goal:**
 - Evaluate \(P \) at \(1, \omega, \omega^2, \omega^3, \ldots, \omega^{n-1} \)

- **Now**
 - \(P_{\text{even}} \) and \(P_{\text{odd}} \) have degree \(n/2 - 1 \) where
 - \(P(\omega^k) = P_{\text{even}}(\omega^{2k}) + \omega^k P_{\text{odd}}(\omega^{2k}) \)
 - \(P(-\omega^k) = P_{\text{even}}(\omega^{2k}) - \omega^k P_{\text{odd}}(\omega^{2k}) \)

- **Recursive Algorithm**
 - Evaluate \(P_{\text{even}} \) at \(1, \omega^2, \omega^4, \ldots, \omega^{n-2} \)
 - Evaluate \(P_{\text{odd}} \) at \(1, \omega^2, \omega^4, \ldots, \omega^{n-2} \)
 - Combine to compute \(P \) at \(1, \omega, \omega^2, \ldots, \omega^{n/2-1} \)
 - Combine to compute \(P \) at \(-1, -\omega, -\omega^2, \ldots, -\omega^{n/2-1} \)
 (i.e. at \(\omega^{n/2}, \omega^{n/2+1}, \omega^{n/2+2}, \ldots, \omega^{n-1} \))

\(\omega^2 = e^{2\pi i / m} \) where \(m = n/2 \)
so problems are of same type but smaller size
Analysis and more

- Run-time
 - \(T(n) = 2 \cdot T(n/2) + cn \) so \(T(n) = O(n \log n) \)
- So much for evaluation ... what about interpolation?
 - Given
 - \(r_0 = R(1) \), \(r_1 = R(\omega) \), \(r_2 = R(\omega^2) \), ..., \(r_{n-1} = R(\omega^{n-1}) \)
 - Compute
 - \(c_0, c_1, ..., c_{n-1} \) s.t. \(R(x) = c_0 + c_1 x + ... + c_{n-1} x^{n-1} \)
Interpolation ≈ Evaluation: strange but true

Non-obvious fact:

- If we define a new polynomial
 \[S(x) = r_0 + r_1x + r_2x^2 + \ldots + r_{n-1}x^{n-1} \]
 where \(r_0, r_1, \ldots, r_{n-1} \)
 are the evaluations of \(R \) at \(1, \omega, \ldots, \omega^{n-1} \)

- Then \(c_k = S(\omega^{-k})/n \) for \(k=0,\ldots,n-1 \)

- Relies on the fact the interpolation (inverse) matrix
 has \(jk \) entry \(\omega^{(jk)}/n \) instead of \(\omega^{jk} \)

So...

- evaluate \(S \) at \(1, \omega^{-1}, \omega^{-2}, \ldots, \omega^{-(n-1)} \) then divide each
 answer by \(n \) to get the \(c_0,\ldots,c_{n-1} \)

- \(\omega^{-1} \) behaves just like \(\omega \) did so the same \(O(n \log n) \)
 evaluation algorithm applies!
Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing sub-problems of roughly equal size is usually critical

Examples:
- Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, …
Why this is called the discrete Fourier transform

- Real Fourier series
 - Given a real valued function f defined on $[0,2\pi]$ the Fourier series for f is given by

 $$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + \ldots + a_m \cos(mx) + \ldots$$

 where

 $$a_m = \frac{1}{2\pi} \int_0^{2\pi} f(x) \cos(mx) \, dx$$

 - is the component of f of frequency m

 In signal processing and data compression one ignores all but the components with large a_m and there aren’t many since
Why this is called the discrete Fourier transform

- Complex Fourier series
 - Given a function f defined on $[0, 2\pi]$ the complex Fourier series for f is given by:
 $$f(z) = b_0 + b_1 e^{iz} + b_2 e^{2iz} + \ldots + b_m e^{mi_z} + \ldots$$
 - where
 $$b_m = \frac{1}{2\pi} \int_0^{2\pi} f(z) e^{-mi_z} \, dz$$
 - is the component of f of frequency m
 - If we discretize this integral using values at n equally spaced points between 0 and 2π we get:
 $$\bar{b}_m = \frac{1}{n} \sum_{k=0}^{n-1} f_k e^{-2kmi\pi/n} = \frac{1}{n} \sum_{k=0}^{n-1} f_k \omega^{-km}$$
 where $f_k = f(2k\pi/n)$
 just like interpolation!
CSE 421: Introduction to Algorithms

Divide and Conquer
Beyond the Master Theorem
Median and Quicksort

Paul Beame
Today

- Divide and conquer examples
 - Simple, randomized median algorithm
 - Expected $O(n)$ time
 - Not so simple, deterministic median algorithm
 - Worst case $O(n)$ time
 - Expected time analysis for Randomized QuickSort
 - Expected $O(n \log n)$ time
Order problems: Find the k^{th} smallest

- Runtime models
 - Machine Instructions
 - Comparisons
- Minimum
 - $O(n)$ time
 - $n-1$ comparisons
- 2nd Smallest
 - $O(n)$ time
 - ? comparisons
Median Problem

- k^{th} smallest for $k = n/2$
- Easily done in $O(n \log n)$ time with sorting
 - How can the problem be solved in $O(n)$ time?

- Select(k, n) – find the k-th smallest from a list of length n
Divide and Conquer

- $T(n) = n + T(\alpha n)$ for $\alpha < 1$
- Linear time solution

- Select algorithm – in linear time, reduce the problem from selecting the k-th smallest of n values to the j-th smallest of αn values, for $\alpha < 1$
Quick Select

QSelect(\(k, S\))

Choose element \(x\) from \(S\)

\(S_L = \{y \in S \mid y < x \}\)
\(S_E = \{y \in S \mid y = x \}\)
\(S_G = \{y \in S \mid y > x \}\)

if \(|S_L| \geq k\)
 return QSelect(\(k, S_L\))
else if \(|S_L| + |S_E| \geq k\)
 return \(x\)
else
 return QSelect(\(k - |S_L| - |S_E|, S_G\))
Implementing "Choose an element x"

- Ideally, we would choose an x in the middle, to reduce both sets in half and guarantee progress

- Method 1
 - Select an element at random

- Method 2
 - BFPRT Algorithm
 - Select an element by a complicated, but linear time method that guarantees a good split
Random Selection

Consider a call to QSelect(k, S), and let S' be the elements passed to the recursive call.

With probability at least $\frac{1}{2}$, $|S'| < \frac{3}{4} |S|$

⇒ On average only 2 recursive calls before the size of S' is at most $\frac{3n}{4}$
Expected runtime is O(n)

- Given \(x \), one pass over \(S \) to determine \(S_L, S_E, \) and \(S_G \) and their sizes: \(cn \) time.
 - Expect \(2cn \) cost before size of \(S' \) drops to at most \(3|S|/4 \)

- Let \(T(n) \) be the expected running time
 - \(T(n) \leq T(3n/4) + 2cn \)
 - \(\leq 2cn + (\frac{3}{4}) 2cn + (\frac{3}{4})^2 2cn + \ldots \)
 - \(\leq 2cn (1 + (\frac{3}{4}) + (\frac{3}{4})^2 + \ldots) \)
Making the algorithm deterministic

- In $O(n)$ time, find an element that guarantees that the larger set in the split has size at most $\frac{3}{4} n$
Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

- Divide S into $n/5$ sets of size 5
- Sort each of these sets of size 5
- Let M be the set of all medians of the sets of size 5
- Let x be the median of M
- $S_L = \{y \in S \mid y < x\}$, $S_G = \{y \in S \mid y > x\}$
- Claim: $|S_L| < \frac{3}{4} |S|$, $|S_G| < \frac{3}{4} |S|$
BFPRT, Step 1: Construct sets of size 5, sort each set

<table>
<thead>
<tr>
<th>13</th>
<th>5</th>
<th>62</th>
<th>32</th>
<th>47</th>
<th>81</th>
<th>64</th>
<th>51</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>16</td>
<td>41</td>
<td>12</td>
<td>8</td>
<td>18</td>
<td>98</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>81</td>
<td>73</td>
<td>69</td>
<td>25</td>
<td>96</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>86</td>
<td>52</td>
<td>25</td>
<td>9</td>
<td>42</td>
<td>91</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>95</td>
<td>65</td>
<td>32</td>
<td>81</td>
<td>7</td>
<td>91</td>
<td>6</td>
<td>11</td>
<td>77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>95</th>
<th>86</th>
<th>81</th>
<th>81</th>
<th>69</th>
<th>91</th>
<th>98</th>
<th>51</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>65</td>
<td>62</td>
<td>73</td>
<td>47</td>
<td>81</td>
<td>96</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>52</td>
<td>32</td>
<td>9</td>
<td>42</td>
<td>91</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>41</td>
<td>25</td>
<td>8</td>
<td>25</td>
<td>64</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>32</td>
<td>12</td>
<td>7</td>
<td>18</td>
<td>6</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>
BFPRT, Step 2: Find median of column medians

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>86</td>
<td>81</td>
<td>81</td>
<td>69</td>
<td>91</td>
<td>98</td>
<td>51</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>65</td>
<td>62</td>
<td>73</td>
<td>47</td>
<td>81</td>
<td>96</td>
<td>36</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>52</td>
<td>32</td>
<td>9</td>
<td>42</td>
<td>91</td>
<td>21</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>41</td>
<td>25</td>
<td>8</td>
<td>25</td>
<td>64</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>32</td>
<td>12</td>
<td>7</td>
<td>18</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BFPRT, Step 2: Find median of column medians

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>86</td>
<td>81</td>
<td>81</td>
<td>69</td>
<td>91</td>
<td>98</td>
<td>51</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>65</td>
<td>62</td>
<td>73</td>
<td>47</td>
<td>81</td>
<td>96</td>
<td>36</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>52</td>
<td>32</td>
<td>9</td>
<td>42</td>
<td>91</td>
<td>21</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>41</td>
<td>25</td>
<td>8</td>
<td>25</td>
<td>64</td>
<td>12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>32</td>
<td>12</td>
<td>7</td>
<td>18</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Imagine sorting columns by column median

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>51</td>
<td>77</td>
<td>69</td>
<td>81</td>
<td>91</td>
<td>98</td>
<td>86</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>17</td>
<td>47</td>
<td>73</td>
<td>81</td>
<td>96</td>
<td>65</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>11</td>
<td>9</td>
<td>32</td>
<td>42</td>
<td>91</td>
<td>45</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>25</td>
<td>25</td>
<td>64</td>
<td>16</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>18</td>
<td>6</td>
<td>5</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
BFPRT, Step 2: Find median of column medians

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>86</td>
<td>81</td>
<td>81</td>
<td>69</td>
<td>91</td>
<td>98</td>
<td>51</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>65</td>
<td>62</td>
<td>73</td>
<td>47</td>
<td>81</td>
<td>96</td>
<td>36</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>52</td>
<td>32</td>
<td>9</td>
<td>42</td>
<td>91</td>
<td>21</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>41</td>
<td>25</td>
<td>8</td>
<td>25</td>
<td>64</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>32</td>
<td>12</td>
<td>7</td>
<td>18</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Imagine sorting columns by column median

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>51</td>
<td>77</td>
<td>69</td>
<td>81</td>
<td>91</td>
<td>98</td>
<td>86</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>17</td>
<td>47</td>
<td>73</td>
<td>81</td>
<td>96</td>
<td>65</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>11</td>
<td>9</td>
<td>32</td>
<td>42</td>
<td>91</td>
<td>45</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>25</td>
<td>25</td>
<td>64</td>
<td>16</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>18</td>
<td>6</td>
<td>5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BFPRT, Step 2: Find median of column medians

95	86	81	81	69	91	98	51	77																					
32	65	62	73	47	81	96	36	17																					
15	45	52	32	9	42	91	21	11																					
14	16	41	25	8	25	64	12	9																					
13	5	32	12	7	18	6	11	5																					

Imagine sorting columns by column median

95	51	77	69	81	91	98	86	81																					
32	36	17	47	73	81	96	65	62																					
15	21	11	9	32	42	91	45	52																					
14	12	9	8	25	25	64	16	41																					
13	11	5	7	12	18	6	5	32																					

79
BFPRT Recurrence

- Sorting all \(\frac{n}{5} \) lists of size 5
 - \(c'n \) time

- Finding median of set \(M \) of medians
 - Recursive computation: \(T(n/5) \)

- Computing sets \(S_L, S_E, S_G \) and \(S' \)
 - \(c''n \) time

- Solving selection problem on \(S' \)
 - Recursive computation: \(T(3n/4) \) since \(|S'| \leq \frac{3}{4} n \)
$T(n) \leq cn + T(n/5) + T(3n/4)$ is $O(n)$

- Key property
 - $\frac{3}{4} + \frac{1}{5} < 1$ (The sum is $\frac{19}{20}$)

- Sum of problem sizes decreases by $\frac{19}{20}$ factor per level of recursion

- Overhead per level is linear in the sum of the problem sizes
 - Overhead decreases by $\frac{19}{20}$ factor per level of recursion
 - Total overhead is linear (sum of geometric series with constant ratio and linear largest term)
Quick Sort

QuickSort(S)

if S is empty, return

Choose element x from S “pivot”

S_L = {y in S | y < x}
S_E = {y in S | y = x}
S_G = {y in S | y > x}

return [QuickSort(S_L), S_E, QuickSort(S_G)]
QuickSort

- Pivot Selection
 - Choose the median
 - \(T(n) = T(n/2) + T(n/2) + cn, \ O(n \log n) \)
 - Choose arbitrary element
 - Worst case – \(O(n^2) \)
 - Average case – \(O(n \log n) \)
 - Choose random pivot
 - Expected time – \(O(n \log n) \)
Expected run time for QuickSort: “Global analysis”

- Count comparisons
- \(a_i, a_j \) – elements in positions \(i \) and \(j \) in the final sorted list. \(p_{ij} \) the probability that \(a_i \) and \(a_j \) are compared
- Expected number of comparisons:

\[
\sum_{i<j} p_{ij}
\]
Lemma: \(P_{ij} \leq \frac{2}{j - i + 1} \)

If \(a_i \) and \(a_j \) are compared then it must be during the call when they end up in different subproblems

- Before that, they aren’t compared to each other
- After they aren’t compared to each other

During this step they are only compared if one of them is the pivot

Since all elements between \(a_i \) and \(a_j \) are also in the subproblem this is \(2 \) out of at least \(j - i + 1 \) choices
Average runtime is $2n \ln n$

$$\sum_{i<j} p_{ij} \leq \sum_{i<j} \frac{2}{(j-i+1)}$$
Average runtime is $2n\ln n$

$$\sum_{i<j} p_{ij} \leq \sum_{i<j} \frac{2}{(j-i+1)}$$

write $j = k+i$

$$= 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{(k+1)}$$
Average runtime is $2n \ln n$

$$\sum_{i<j} p_{ij} \leq \sum_{i<j} \frac{2}{(j-i+1)}$$

write $j = k + i$

$$= 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{(k+1)}$$

$$\leq 2 (n-1) (H_n - 1)$$

where $H_n = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n$

$$= \ln n + O(1)$$
Average runtime is 2nln n

\[\sum_{i<j} p_{ij} \leq \sum_{i<j} \frac{2}{(j-i+1)} \]

write \(j = k + i \)

\[= 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{(k+1)} \]

\[\leq 2(n-1)(H_n-1) \]

where \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n} \)

\[= \ln n + O(1) \]

\[\leq 2n \ln n + O(n) \leq 1.387n \log_2 n \]