
CSE421: Design and Analysis of Algorithms April 16, 2021

Lecturer: Shayan Oveis Gharan Lecture 9

1 DFS Properties

Observation 1. During dfs(x) every vertex marked discovered is a descendant of x in the DFS
tree

Lemma 2. If {x, y} is a non-tree of the DFS tree, then one of x, y is an ancestor of the other.

Proof One of x, y will be discovered first in DFS. Wlog say x is discovered first. We want show
that x will be an ancestor of y. We claim that y will be discovered while x is in stack (or dfs(x)
is still running). The reason is that by the time that x look at its neighbor y in its for loop y
must have been discovered already, (because {x, y} is a non-tree of the DFS tree). Therefore by
observation y is a descendant of x.

2 DAGs

Let G be a directed graph; we prove that G is a DAG iff G has a topological sorting.

Lemma 3. If G has a topological order, the G is a DAG.

Proof Suppose G has a topological order, i.e., we can name its vertices 1, 2, . . . , n put them on
a line in order such that all edges go from left to right, i.e., if i → j is a directed edge of G, we
have i < j. We prove by contradiction. Suppose G has a cycle C = c1, . . . , ck. Let ci be the
smallest index among c1, . . . , ck in the topological order. Then, ci−1 → ci is a directed edge in G
(if i = 1 take the directed edge ck → c1). But since ci is the smallest index vertex in C we must
have ci−1 > ci. But by definition of the topological order every directed edge of G is from a smaller
index to a bigger one. That is a contradiction. So, G is a DAG.

In the rest we see that DAGs can be seen as analogues of trees in directed graphs. Many proofs
that we did for trees naturally extend to DAGs.

Definition 4. For a directed graph G, we say a vertex v is a source node if the indegree of v is 0
and we say v is a sink node if the outdegree of v is 0.

Lemma 5. If G = (V,E) is a DAG then it has a source node.

Proof We prove by contradiction. Suppose G has no source node, so indeg(v) ≥ 1 for all v ∈ V .
Now run the following process:

Start with an arbitrary vertex v1.

9-1

indeg(v1) ≥ 1 ⇒ ∃v2 ∈ V, s.t., v2 → v1

indeg(v2) ≥ 1 ⇒ ∃v3 ∈ V, s.t., v3 → v2, v3 ∕= v1(o.w., G has a cycle)

indeg(v3) ≥ 1 ⇒ ∃v4 ∈ V, s.t., v4 → v3, v4 ∕= v1, v2(o.w., G has a cycle)

Because G has a finite number of vertices after at most |V | iterations we should stop to get either
a cycle in G or a node of indegree 0 both of which are contradictions with the assumptions. So, G
must have a source node.

We said above that DAGs resemble trees, source node resembles leaves. So, similar to trees
that we induct by deleting a leaf, we induct in DAGs by deleting source nodes.

Lemma 6. If G is a DAG, then G has a topological order.

Proof We prove by induction, and in fact our proof will give an algorithm to construct the
topological order. Define P (n) =“Any DAG with n vertices has a topological order”.

Base Case: P (1) holds. A DAG with a vertex has no edges so the claim obviously holds.
IH: P (n− 1) holds for some n ≥ 2.
IS: We prove P (n). Given an arbitrary DAG G with n vertices. By Lemma 5, G has a

source node, call it v. Define G′ = G− v. We claim G′ is also a DAG. This is because by deleting
vertices/edges we do not introduce cycles. Since G′ also has n−1 vertices by IH G′ has a topological
order. So, we can label its vertices say with 1, 2, . . . , n− 1 such that for every directed edge i → j
we have i < j.

Now, to get a topological order of G, we simply give v the label 0, i.e., we put it at the beginning
of the topological order. Since v is a source node, i.e., it has indegree 0, all new edges of v are going
out to the rest of the nodes. So, we get a topological order of G such that for every edge i → j we
have i < j.

9-2

