
CSE421: Design and Analysis of Algorithms April 21, 2021

Lecturer: Shayan Oveis Gharan Lecture 11

1 Interval Partitioning

Definition 1 (Depth). Given a set of intervals, the depth of this set is the maximum number of
open intervals that contain a time t.

Lemma 2. In any instance of interval partitioning we need at least depth many classrooms to
schedule these intervals/courses.

Proof This is simply because by definition of depth there is a time t and depth many courses
that are all running at time t. That means that these courses are mutually in-compatible, i.e., no
two of them can be scheduled at the same classroom. So, in any schedule we would need depth
many classrooms.

Theorem 3. In Interval Partitioning problem Greedy is optimum.

Proof Suppose that the greedy algorithm allocates d classrooms. Our goal is to prove that
d ≤ depth. Note that this is enough to prove the theorem because by the previous lemma, depth ≤
OPT . So, putting these together we get d ≤ OPT . On the other hand, by definition of OPT, we
know OPT ≤ d. So, we must have d = OPT .

To show d ≤ depth, by definition of depth, it is enough to find a time t∗ such that ≥ d open
intervals contain t∗. Let t be the time that we allocate the d-th classroom. At this time we were
suppose to schedule, say j-th, course but all classrooms were already occupied so greedy had to
allocate the d-th classroom. The main observation is that, by description of the algorithm, every
course we have schedule so far must start before s(j). Furthermore, BC all classrooms are occupied
at time t there must be d − 1 courses which are still running, i.e., d − 1 open intervals. Now, let
t∗ := t+ ! where ! > 0 is chosen small enough such that none of those d− 1 jobs together with job
j end before or at t∗. But then we have d running courses at time t∗ and this implies depth ≥ d.

Lemma 4 (Cut Property). Let (S, V −S) be a cut in G and e be the smallest edge of this cut, then
e is in every MST.

Proof We prove by contradiction. Let T ∗ be a MST such that e /∈ T ∗. We want to use the
exchange argument. Namely, find an edge g ∈ T ∗ such that g ∈ (S, V − S) and T ∗ − e + g
is all a MST. But, since e is the smallest edge of G in (S, V − S) we must have ce < cg, so
c(T ∗ − e+ g) = c(T ∗)− ce + cg < c(T ∗) which is a contradiction with optimality of T ∗.

So, the whole question is how to find this edge g. One idea is to let g be an arbitrary edge of
T ∗ in the cut (S, V − S); note that T ∗ must have at least one edge because it is connected and
spanning. But, we saw that this cannot work, for example in the picture below the edge e cannot
be swapped with f because the resulting subgraph will be disconnected and will have a cycle.

11-1



e

g

f

S V − S

So, to find the correct edge g and make sure that T ∗ + e− g does not have a cycle, we first add
e to T ∗. T ∗ + e has n edges so it must have a cycle, say C which has the edge e (recall that we
proved any graph with n edges has a cycle). Since any cycle must cross any cut even number of
times C must have another edge, call it g, such that g ∈ (S, V − S). Now let T := T ∗ + e− g. We
claim that T is a spanning tree. To check it is enough to show that T satisfies two of the following
three properties of spanning trees (we said this without proof): (i) n− 1 edges, (ii) connected, (ii)
acyclic. First since T ∗ has n− 1 edges and T has exactly n− 1 edges as well. Second, we show T is
connected. This is because T ∗+ e is connected and g is just an edge of the cycle C that we remove.
So, after removing g the endpoints of g are still connected through the rest of C. So, T ∗ + e− g is
connected. This implies T is a spanning tree, but since c(T ) < c(T ∗) we get a contradiction.

11-2


