CSE421: Design and Analysis of Algorithms April 21, 2021

Lecturer: Shayan Owveis Gharan Lecture 11

1 Interval Partitioning

Definition 1 (Depth). Given a set of intervals, the depth of this set is the maximum number of
open intervals that contain a time t.

Lemma 2. In any instance of interval partitioning we need at least depth many classrooms to
schedule these intervals/courses.

Proof This is simply because by definition of depth there is a time ¢ and depth many courses
that are all running at time ¢. That means that these courses are mutually in-compatible, i.e., no
two of them can be scheduled at the same classroom. So, in any schedule we would need depth
many classrooms. u

Theorem 3. In Interval Partitioning problem Greedy is optimum.

Proof Suppose that the greedy algorithm allocates d classrooms. Our goal is to prove that
d < depth. Note that this is enough to prove the theorem because by the previous lemma, depth <
OPT. So, putting these together we get d < OPT. On the other hand, by definition of OPT, we
know OPT < d. So, we must have d = OPT.

To show d < depth, by definition of depth, it is enough to find a time ¢* such that > d open
intervals contain t*. Let ¢ be the time that we allocate the d-th classroom. At this time we were
suppose to schedule, say j-th, course but all classrooms were already occupied so greedy had to
allocate the d-th classroom. The main observation is that, by description of the algorithm, every
course we have schedule so far must start before s(j). Furthermore, BC all classrooms are occupied
at time ¢ there must be d — 1 courses which are still running, i.e., d — 1 open intervals. Now, let
t* :=t + € where € > 0 is chosen small enough such that none of those d — 1 jobs together with job
7 end before or at t*. But then we have d running courses at time ¢t* and this implies depth > d. B

Lemma 4 (Cut Property). Let (S,V —S) be a cut in G and e be the smallest edge of this cut, then
e is in every MS'T.

Proof We prove by contradiction. Let 7% be a MST such that e ¢ T*. We want to use the
exchange argument. Namely, find an edge g € T such that g € (S,V —5) and T* —e + ¢
is all a MST. But, since e is the smallest edge of G in (S,V — S) we must have c. < ¢4, so
c(T* —e+g) =c(T*) — ce + ¢4 < ¢(T*) which is a contradiction with optimality of 7.

So, the whole question is how to find this edge g. One idea is to let g be an arbitrary edge of
T* in the cut (S,V — S5); note that T must have at least one edge because it is connected and
spanning. But, we saw that this cannot work, for example in the picture below the edge e cannot
be swapped with f because the resulting subgraph will be disconnected and will have a cycle.

11-1

So, to find the correct edge g and make sure that T 4+ e — g does not have a cycle, we first add
e to T*. T* + e has n edges so it must have a cycle, say C which has the edge e (recall that we
proved any graph with n edges has a cycle). Since any cycle must cross any cut even number of
times C' must have another edge, call it g, such that g € (S,V —S). Now let T :=T* + e —g. We
claim that T is a spanning tree. To check it is enough to show that T satisfies two of the following
three properties of spanning trees (we said this without proof): (i) n — 1 edges, (ii) connected, (ii)
acyclic. First since 7" has n — 1 edges and T has exactly n — 1 edges as well. Second, we show T is
connected. This is because T™ + e is connected and g is just an edge of the cycle C that we remove.
So, after removing ¢ the endpoints of g are still connected through the rest of C'. So, T* + e — g is
connected. This implies T is a spanning tree, but since ¢(T") < ¢(T™) we get a contradiction. [|

11-2

