April 19, 2021

Lecturer: Shayan Oveis Gharan

Lecture 10

1 Interval Scheduling

Theorem 1. Greedy is optimum.

Proof Technique: Greedy stays ahead, i.e., Greedy is "better" than OPT at any time in ALG. **Proof** Let i_1, \ldots, i_k be the jobs chosen by the greedy algorithm. Similarly, let j_1, \ldots, j_m be the jobs chosen by OPT. Our goal is to show $k \ge m$. Recall that by definition of OPT we always know that $m \ge k$. So, we if we prove $k \ge m$ these together imply that k = m and we are done.

Before proving $m \ge k$ we prove the following claim by induction:

Claim 2. For any $1 \le r \le k$, we have $f(i_r) \le f(j_r)$.

Proof Let $P(r) := f(i_r) \le f(j_r)$.

Base Case: P(1) holds. This is because the first job in Greedy is the job with the smallest finishing time.

IH: Assume P(r) for some $r \ge 1$.

IS: Our goal is to prove P(r+1), i.e., to show $f(i_{r+1}) \leq f(j_{r+1})$. First, by IH we can write,

$$f(i_r) \le f(j_r) \le s(j_{r+1}),\tag{1}$$

where the second equation follows by the fact that the jobs scheduled in OPT are non-overlapping.

Now, by definition of Greedy, i_{r+1} is the job with the smallest finishing time among all jobs that start right at or after $f(i_r)$. Equation 1 shows that the job j_{r+1} also starts right at or after $f(i_r)$; so j_{r+1} is a candidate for i_{r+1} and so we must have $f(i_{r+1}) \leq f(j_{r+1})$.

Now, we are ready to prove $k \geq m$.

For contradiction assume that k < m. So, OPT has a job j_{k+1} but i_{k+1} does not exists. By the above claim we have $f(i_k) \leq f(j_k) \leq s(j_{k+1})$, i.e., there is a job in OPT which starts right at or after $f(i_k)$. So, greedy could have scheduled j_{k+1} after i_k but it didn't which is a contradiction. So, we must have $k \geq m$.