CSE 421: Introduction to Algorithms

Course Overview

Shayan Oveis Gharan

Administrativia Stuffs

HW1 is due Thursday April 08 at 11:59PM Please submit to Gradescope

Late Submission: Fill out an extension request in edstem.

How to submit?

- Double check your submission before the deadline!!
- Please typeset your solution if possible

Guidelines:

- Always justify your answer
- You can collaborate, but you must write solutions on your own
- Your proofs should be clear, well-organized, and concise. Spell out main idea.
- Sanity Check: Spell out when you use assumptions of the problem

Induction: Intro 2

Prove that every instance of stable matchings with n companies and n applicants where some participant declare others as unacceptable has at most $n! = n(n - 1) \dots 21$ many perfect matchings.

Five Representative Problems

- 1. Interval Scheduling
- 2. Weighted Interval Scheduling
- 3. Bipartite Matching
- 4. Independent Set Problem
- 5. Competitive Facility Location

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum cardinality subset of jobs that can be run on a single machine.

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum weight subset of jobs that can be run on a single machine.

Bipartite Matching

Input: Given a bipartite graph

Goal: Find the maximum cardinality matching

Independent Set

Input: A graph

Goal: Find the maximum independent set

Subset of nodes that no two joined by an edge

Competitive Facility Location

Input: Graph with weight on each node

Game: Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors have been selected.

Goal. Does player 2 have a strategy which guarantees a total value of *V* no matter what player 1 does?

Second player can guarantee 20, but not 25.

Five Representative Problems

Variation of a theme: Independent set Problem

- 1. Interval Scheduling *n* log *n* greedy algorithm
- 2. Weighted Interval Scheduling *n* log *n* dynamic programming algorithm
- 3. Bipartite Matching n^k maximum flow based algorithm
- 4. Independent Set Problem: NP-complete
- 5. Competitive Facility Location: PSPACE-complete

Main Objective: Design Efficient Algorithms that finds optimum solutions in the Worst Case

Measuring Efficiency

Time \approx # of instructions executed in a simple programming language

- only simple operations (+,*,-,=,if,call,...)
- each operation takes one time step
- each memory access takes one time step
- no fancy stuff (add these two matrices, copy this long string,...) built in; write it/charge for it as above

Time Complexity

Problem: An algorithm can have different running time on different inputs

Solution: The complexity of an algorithm associates a number T(N), the "time" the algorithm takes on problem size N.

On which inputs of size N?

Mathematically,

T is a function that maps positive integers giving problem size to positive integers giving number of steps

Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on any input of size **N**

This Couse

Average Case Complexity: avg # steps algorithm takes on inputs of size **N**

Best Case Complexity: min # steps algorithm takes on any input of size **N**

Why Worst-case Inputs?

- Analysis is typically easier
- Useful in real-time applications e.g., space shuttle, nuclear reactors)
- Worst-case instances kick in when an algorithm is run as a module many times
 e.g., geometry or linear algebra library
- Useful when running competitions e.g., airline prices
- Unlike average-case no debate about the right definition

Time Complexity on Worst Case Inputs

O-Notation

Given two positive functions **f** and **g**

- f(N) is O(g(N)) iff there is a constant c>0 s.t.,
 f(N) is eventually always ≤ c g(N)
- f(N) is Ω(g(N)) iff there is a constant ε>0 s.t.,
 f(N) is ≥ ε g(N) for infinitely
- f(N) is Θ(g(N)) iff there are constants c₁, c₂>0 so that eventually always c₁g(N) ≤ f(N) ≤ c₂g(N)

Asymptotic Bounds for common fns

• Polynomials:

$$a_0 + a_1 n + \dots + a_d n^d$$
 is $O(n^d)$

• Logarithms:

 $\log_a n = O(\log_b n)$ for all constants a, b > 0

- Logarithms: log grows slower than every polynomial For all x > 0, $\log n = O(n^k)$
- $n \log n = O(n^{1.01})$

Efficient = Polynomial Time

An algorithm runs in polynomial time if $T(n)=O(n^d)$ for some constant d independent of the input size n.

Why Polynomial time?

If problem size grows by at most a constant factor then so does the running time

- E.g. $T(2N) \le c(2N)^k \le 2^k (cN^k)$
- Polynomial-time is exactly the set of running times that have this property

Typical running times are small degree polynomials, mostly less than N³, at worst N⁶, not N¹⁰⁰

Why it matters?

- #atoms in universe < 2^{240}
- Life of the universe $< 2^{54}$ seconds
- A CPU does $< 2^{30}$ operations a second

If every atom is a CPU, a 2^n time ALG cannot solve n=350 if we start at Big-Bang.

	п	$n \log_2 n$	n ²	n ³	1.5 ⁿ	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

not only get very big, but do so abruptly, which likely yields errati

performance on small instances