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Administrativia Stuffs

HW1 is due Thursday April 08 at 11:59PM
Please submit to Gradescope

Late Submission: Fill out an extension request 
in edstem.

How to submit?
• Double check your submission before the deadline!!
• Please typeset your solution if possible

Guidelines:
• Always justify your answer
• You can collaborate, but you must write solutions on your own
• Your proofs should be clear, well-organized, and concise. Spell out 

main idea.
• Sanity Check: Spell out when you use assumptions of the problem
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Induction: Intro 2

Prove that every instance of stable matchings with n 
companies and n applicants where some participant 
declare others as unacceptable has at most 𝑛! = 𝑛(
)

𝑛 −
1 …21 many perfect matchings.
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Five Representative Problems

1. Interval Scheduling
2. Weighted Interval Scheduling
3. Bipartite Matching
4. Independent Set Problem
5. Competitive Facility Location
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Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum cardinality subset of jobs that can 
be run on a single machine.
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Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum weight subset of jobs that can be 
run on a single machine.
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Bipartite Matching

Input: Given a bipartite graph

Goal: Find the maximum cardinality matching
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Independent Set

Input: A graph

Goal: Find the maximum independent set
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Subset of nodes that no two joined by an edge
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Competitive Facility Location

Input: Graph with weight on each node 

Game: Two competing players alternate in selecting nodes.  Not 
allowed to select a node if any of its neighbors have been 
selected.

Goal. Does player 2 have a strategy which guarantees a total 
value of 𝑉 no matter what player 1 does?
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Five Representative Problems

Variation of a theme: Independent set Problem

1. Interval Scheduling
𝑛 log 𝑛 greedy algorithm

2. Weighted Interval Scheduling
𝑛 log 𝑛 dynamic programming algorithm

3. Bipartite Matching
𝑛! maximum flow based algorithm

4. Independent Set Problem: NP-complete

5. Competitive Facility Location: PSPACE-complete
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Main Objective: Design Efficient Algorithms
that finds optimum solutions in the Worst Case
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Measuring Efficiency

Time » # of instructions executed in a simple programming 
language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long 

string,…) built in; write it/charge for it as above
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Time Complexity

Problem: An algorithm can have different running time on 
different inputs

Solution: The complexity of an algorithm associates a 
number T(N), the “time” the algorithm takes on problem 
size N.

Mathematically,
T is a function that maps positive integers giving 

problem size to positive integers giving number of 
steps
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Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on 
any input of size N

Average Case Complexity: avg # steps algorithm takes on 
inputs of size N

Best Case Complexity: min # steps algorithm takes on any 
input of size N
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Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications 
e.g., space shuttle, nuclear reactors)

• Worst-case instances kick in when an algorithm is run as 
a module many times 
e.g., geometry or linear algebra library

• Useful when running competitions 
e.g., airline prices

• Unlike average-case no debate about the right definition

16



17

Time Complexity on Worst Case Inputs
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O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,        
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t., 
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that 
eventually always c1g(N) £ f(N) £ c2g(N)
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Asymptotic Bounds for common fns

• Polynomials:
𝑎! + 𝑎"𝑛 +⋯+ 𝑎#𝑛# is 𝑂 𝑛#

• Logarithms: 
log$ 𝑛 = 𝑂(log% 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛&)

• 𝑛 log 𝑛 = 𝑂 𝑛".!"
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Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some 
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then 

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk) 
• Polynomial-time is exactly the set of running times that 

have this property

Typical running times are small degree polynomials, 
mostly less than N3, at worst N6, not N100
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Why it matters?
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• #atoms in universe < 2"#$
• Life of the universe < 2%# seconds
• A CPU does < 2&$ operations a second
If every atom is a CPU, a 2' time ALG cannot solve n=350 if we start at 
Big-Bang.

not only get very big, but do so abruptly, which likely yields erratic 
performance on small  instances


