
CSE 421: Introduction
to Algorithms

Course Overview

Shayan Oveis Gharan

1

Administrativia Stuffs

HW1 is due Thursday April 08 at 11:59PM
Please submit to Gradescope

Late Submission: Fill out an extension request
in edstem.

How to submit?
• Double check your submission before the deadline!!
• Please typeset your solution if possible

Guidelines:
• Always justify your answer
• You can collaborate, but you must write solutions on your own
• Your proofs should be clear, well-organized, and concise. Spell out

main idea.
• Sanity Check: Spell out when you use assumptions of the problem

2

Induction: Intro 2

Prove that every instance of stable matchings with n
companies and n applicants where some participant
declare others as unacceptable has at most 𝑛! = 𝑛(
)

𝑛 −
1 …21 many perfect matchings.

3

Five Representative Problems

1. Interval Scheduling
2. Weighted Interval Scheduling
3. Bipartite Matching
4. Independent Set Problem
5. Competitive Facility Location

4

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum cardinality subset of jobs that can
be run on a single machine.

5
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum weight subset of jobs that can be
run on a single machine.

6
Time

0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Bipartite Matching

Input: Given a bipartite graph

Goal: Find the maximum cardinality matching

7

C

1

5

2

A

E

3

B

D 4

Independent Set

Input: A graph

Goal: Find the maximum independent set

8

Subset of nodes that no two joined by an edge

6

2

5

1

7

3
4

Competitive Facility Location

Input: Graph with weight on each node

Game: Two competing players alternate in selecting nodes. Not
allowed to select a node if any of its neighbors have been
selected.

Goal. Does player 2 have a strategy which guarantees a total
value of 𝑉 no matter what player 1 does?

9

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

Five Representative Problems

Variation of a theme: Independent set Problem

1. Interval Scheduling
𝑛 log 𝑛 greedy algorithm

2. Weighted Interval Scheduling
𝑛 log 𝑛 dynamic programming algorithm

3. Bipartite Matching
𝑛! maximum flow based algorithm

4. Independent Set Problem: NP-complete

5. Competitive Facility Location: PSPACE-complete
10

Main Objective: Design Efficient Algorithms
that finds optimum solutions in the Worst Case

11

Measuring Efficiency

Time » # of instructions executed in a simple programming
language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long

string,…) built in; write it/charge for it as above

13

Time Complexity

Problem: An algorithm can have different running time on
different inputs

Solution: The complexity of an algorithm associates a
number T(N), the “time” the algorithm takes on problem
size N.

Mathematically,
T is a function that maps positive integers giving

problem size to positive integers giving number of
steps

14

On which inputs of size N?

Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on
any input of size N

Average Case Complexity: avg # steps algorithm takes on
inputs of size N

Best Case Complexity: min # steps algorithm takes on any
input of size N

15

This Couse

Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications
e.g., space shuttle, nuclear reactors)

• Worst-case instances kick in when an algorithm is run as
a module many times
e.g., geometry or linear algebra library

• Useful when running competitions
e.g., airline prices

• Unlike average-case no debate about the right definition

16

17

Time Complexity on Worst Case Inputs

Problem size N

Ti
m

e

T(N)

𝑁 log%𝑁

2𝑁 log2𝑁

O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t.,
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that
eventually always c1g(N) £ f(N) £ c2g(N)

18

Asymptotic Bounds for common fns

• Polynomials:
𝑎! + 𝑎"𝑛 +⋯+ 𝑎#𝑛# is 𝑂 𝑛#

• Logarithms:
log$ 𝑛 = 𝑂(log% 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛&)

• 𝑛 log 𝑛 = 𝑂 𝑛".!"

19

Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk)
• Polynomial-time is exactly the set of running times that

have this property

Typical running times are small degree polynomials,
mostly less than N3, at worst N6, not N100

20

Why it matters?

21

• #atoms in universe < 2"#$
• Life of the universe < 2%# seconds
• A CPU does < 2&$ operations a second
If every atom is a CPU, a 2' time ALG cannot solve n=350 if we start at
Big-Bang.

not only get very big, but do so abruptly, which likely yields erratic
performance on small instances

