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Max Flow Min Cut Theorem

Augmenting path theorem. Flow fis a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max s-t flow is equal to the value of the min s-t cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

There exists a cut (A, B) such that v(f) = cap(A, B).
(<J (ii) Flow f is a max flow.
|||) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.

(i) = (iii) We show contrapositive.

Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along that path.



Pf of Max Flow Min Cut Theorem

(iit) => (i)
No augmenting path for f => there is a cut (A,B): v(f)=cap(A,B)

« Letf be a flow with no augmenting paths.

« Let A be set of vertices reachable from s in residual graph.
« By definition of A, s € A.

« By definition of f, t ¢ A.

vH= Y f@- Y fe)

eoutofA einto A

= 2 c(e)

eoutof A

= cap(4, B)



Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities
¢, (e) remains an integer throughout the algorithm. nejg
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Theorem. The algorithm terminates in at most Lo
v(f*) < nC iterations, if f* is optimal flow. -
Pf. Each augmentation increase value by at least 1.

min <Cc ({33 \/'icﬂt))

Cat (n-D-C,
Corollary. If C =1, Ford-Fulkerson runs in O(mn) time=

n«n) A \ '
Moce  ge M“'!\J rentine O C'{") FS?E vi#)=n.

Integrality theorem. If all capacities are mtegers then there
exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from in@
“Asswn:) ’
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Edge Disjoint Paths



Edge Disjoint Paths Problem

Given a digraph G = (V, E) and two nodes s and t, find the max
number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in
common.

Ex: communication networks.




Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.
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Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf. <
Suppose there are k edge-disjoint paths P, ..., Py.
Set f(e) = 1 if e participates in some path P; ; else set f(e) =0.
Since paths are edge-disjoint, f is a flow of value k. =




Max Flow Formulation
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Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf. = Suppose max flow value is k

Integrality theorem = there exists 0-1 flow f of value k.
Consider edge (s, u) with f(s, u) = 1.

* by conservation, there exists an edge (u, v) with f(u, v) = 1
« continue until reach t, always choosing a new edge

This produces k (not necessarily simple) edge-disjoint paths. =
is produ ( sarily simple) edge-disjoint p

We can return to u so we can have cycles. But we can eliminate cycles if desired




Applications of Max Flow:
Bipartite Matching



Maximum Matching Problem

Given an undirected graph G = (V, E).

A set M € E is a matching if each node appears in at most one
edge in M.

Goal: find a matching with largest cardinality.
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Bipartite Matching Problem

Given an undirected bipartite graph ¢ = (X U Y, E)
A set M € E is a matching if each node appears in at most one

edge in M.
Goal: find a matching with largest cardinality. |
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Bipartite Matching using Max Flow

Create digraph H as follows:
« Orient all edges from X to Y, and assign infinite (or unit) capacity.
« Add source s, and unit capacity edges from s to each node in L.

« Add sink t, and unit capacity edges from each node in R to t.
‘/ SOU\ Can So “
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Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H.
Pf. <

Given max matching M of cardinality k.

Consider flow f that sends 1 unit along each of k edges of M.

fis a flow, and has cardinality k.
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Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H.
Pf. (of =) Let f be a max flow in H of value k.

Integrality theorem = Kk is integral and we can assume f is 0-1.
Consider M = set of edges from X to Y with f(e) = 1.
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Perfect Bipartite Matching



Perfect Bipartite Matching

Def. A matching M c E is perfect if each node appears in
exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:
« Clearly we must have |X| =1Y].

« What other conditions are necessary?

« What conditions are sufficient?
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Perfect Bipartite Matching: N(S)

N(S)

Def. Let S be a subset of nodes, S
and let N(S) be the set of nodes O
adjacent to nodes in S. O

Observation. If a bipartite graph G has a
perfect matching, then [N(S)| > |S| for all subsets S C X.
Pf. Each v € S has to be in N(S).
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Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let¢G = (XUY,E) be a
bipartite graph with||X]| = |Y].

Then, G has a perfect matching iff [N(S)| = |S]| for all
Subsets S € X. ‘

Pf. =
This was the previous observation.
If IN(S)| < |S| for some S, then there is no perfect matching.
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Marriage Theorem

Pf. 3Ssc X s.t., IN(S)| < |S| & G does not a perfect matching
Formulate as a max-flow and let (4, B) be the min s-t cut

G has no perfect matching => v(f*) < |X|. So, cap(4,B) < |X]
Define X, =XNAXg=XNBY,=YNA

Then, cap(A,B) = |Xg| + |Y4]

Since min-cut does not use « edges, N(X,) € Y,
IN(Xp)| < |Y4| = cap(A, B) — [Xg| = cap(A, B) — |X| + |X4| < [X4]
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Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?
Generic augmenting path: O(m val(f*) ) = O(mn).
: O(m?log C) = 0O(m?).
. O(m n'?),

Non-bipartite matching.

Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galail

Blossom algorithm: O(n#). [Edmonds 1965]
Best known: O(m n'2). [Micali-Vazirani 1980]
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