CSE 421

Alg Design by Induction, Dynamic Programming

Shayan Oveis Gharan
Q/A

• How to practice more?
 • Try more exercises: there are lots of exercise in the book
 • See https://train.usaco.org/usacogate

• How to think, how to write?
 • Many cases it is better to spend more time on thinking than writing.
 • Try to write concise proofs for HW problems.
 • Make sure you use all assumptions of the problem.
In HW2-P3 we designed an algorithm to find the shortest path in a graph with weights \{1,2,3\} where we break edge of weight \(w_e\) into a path of length \(w_e\). Since all edge weights have the \textbf{positive integer} weights, we can run the same algorithm to construct a modified graph \(G'\). Solve problem on \(G'\) by DFS.

Runtime: Since sum of edge weights is at most \(4m\), \(G'\) has \(O(m)\) edges and \(O(m+n)\) vertices so the algorithm runs in \(O(m+n)\).

Correctness: Similar to HW there is a \textbf{bijection} between all paths from \(s\) to a vertex \(v\) in \(G, G'\), where we substitute each edge \(e\) with a path of length \(w_e\). Therefore, the \textbf{shortest path from \(s\) to \(v\) in \(G,G'\) are the same (for all \(v\))}. The algorithm works since BFS finds the shortest path.
Sample Soln of Problem 3 Midterm

Runtime: Similar to sample midterm we have the recursion $T(n)=T(n/2)+O(1)$, So, $T(n)=O(\log n)$.

Proof of correctness: Construct an array B where $B[i]=A[i]/2$ (note that this is just for sake of analysis). Since A has distinct and sorted elements, array B elements are distinct and sorted. Furthermore, since elements of A are even, elements of B are integers. Our modified algorithm above is essentially running the algorithm from sample midterm on B. Since B is sorted and has distinct integers by the same proof the algorithm succeeds.
Approximation Alg Summary

• To design approximation Alg, always find a way to lower bound OPT

• The best known approximation Alg for vertex cover is the greedy.
 – It has been open for 50 years to obtain a polynomial time algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the greedy.
 – It is NP-Complete to obtain better than ln n approximation ratio for set cover.
Single Source Shortest Path

Given an (un)directed graph $G= (V,E)$ with non-negative edge weights $c_e \geq 0$ and a start vertex s,

Find length of shortest paths from s to each vertex in G.

[Map showing a route from UW to Amazon]
Dijkstra(s)

• Set all vertices v undiscovered, \(d(v) = \infty \)
Set \(d(s) = 0 \), mark s discovered.

while there is edge from discovered vertex to undiscovered vertex,

• let \((u, v)\) be such edge minimizing
\[
 d(u) + c_{u,v}
\]

• set \(d(v) = d(u) + c_{u,v} \), mark \(v \) discovered
Dijkstra’s Algorithm
while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u,v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + l_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
 let \((u, v)\) be such edge minimizing \(d(u) + l_{u,v}\)
 set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark v discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex, let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\), set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,

let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)

set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark v discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + l_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark v discovered
Dijkstra’s Algorithm

while there is edge from discovered vertex to undiscovered vertex,
 let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
 set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
let \((u, v)\) be such edge minimizing \(d(u) + c_{u,v}\)
set \(d(v) = d(u) + c_{u,v}\), mark \(v\) discovered
while there is edge from discovered vertex to undiscovered vertex,
 let (u, v) be such edge minimizing $d(u) + c_{u,v}$
 set $d(v) = d(u) + c_{u,v}$, mark v discovered
Disjkstra’s Algorithm: Correctness

Let S be the set of discovered vertices, P(k)=`If |S| = k, then for all discovered vertices v ∈ S, d(v) is the shortest path from s to v. Base Case: This is always true when S = {s}.

IH: P(k) holds

IS: Say v is the k+1-st vertex that we discover using edge (u,v) and we set

\[d(v) = d(u) + c_{u,v} \]

Call the path to v, \(P_v \). If \(P_v \) is not the Shortest path, there is a shorter path \(P \)

Consider the first time that P leaves S (say with edge (x,y)).
S -> x has weight (at least) \(d(x) \)

So, \(c(P) \geq d(x) + c_{x,y} \geq d(u) + c_{u,v} = d(v) = c(P_v). \)
A contradiction.
Remarks on Dijkstra’s Algorithm

- Algorithm also produces a tree of shortest paths to s following Parent links
- Algorithm works on directed graph (with nonnegative weights)
- The algorithm fails with negative edge weights.
 - e.g., some airline tickets

Why does it fail?

- Dijkstra’s algorithm is similar to BFS:
 - Substitute every edge with $c_e = k$ with a path of length k, then run BFS.
Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key

- **Insert**
- **Find-min**
 - Return the element with the smallest key
- **Delete-min**
 - Return the element with the smallest key and delete it from the data structure
- **Decrease-key**
 - Decrease the key value of some element

Implementations

Arrays:
- \(O(n)\) time find/delete-min,
- \(O(1)\) time insert/decrease key

Binary Heaps:
- \(O(\log n)\) time insert/decrease-key/delete-min,
- \(O(1)\) time find-min
Dijkstra’s Algorithm

Runs in $O((n+m)\log n)$.

Dijkstra(G, c, s) {
 foreach (v \in V) $d[v] \leftarrow \infty$ //This is the key of node v
 $d[s] \leftarrow 0$
 foreach (v \in V) insert v onto a priority queue Q
 Initialize set of explored nodes $S \leftarrow \{s\}$

 while (Q is not empty) {
 $u \leftarrow$ delete min element from Q
 $S \leftarrow S \cup \{u\}$
 foreach (edge $e = (u, v)$ incident to u)
 if (($v \notin S$) and ($d[u] + c_e < d[v]$))
 $d[v] \leftarrow d[u] + c_e$
 Decrease key of v to $d[v]$.
 $Parent(v) \leftarrow u$
 }
}

$O(n)$ of delete min, each in $O(\log n)$

$O(m)$ of decrease key, each runs in $O(\log n)$
Algorithm Design by Induction
Maximum Consecutive Subsequence

Problem: Given a sequence x_1, \ldots, x_n of integers (not necessarily positive),

Goal: Find a subsequence of consecutive elements s.t., the sum of its numbers is maximum.

1 -3 7 -2 -3 8 -10 1 -7

Applications: Figuring out the highest interest rate period in stock market
Brute Force Approach

Try all consecutive subsequences of the input sequence.

There are \(\binom{n}{2} = \Theta(n^2) \) such sequences.

We can compute the sum of numbers in each such sequence in \(O(n) \) steps.

So, the ALG runs in \(O(n^3) \).

With a clever loop we can do this in \(O(n^2) \). But, can we solve in linear time?
First Attempt (Induction)

Suppose we can find the maximum-sum subsequence of \(x_1, \ldots, x_{n-1}\). Say it is \(x_i, \ldots, x_j\)

- If \(x_n < 0\) then it does not belong to the largest subsequence. So, we can output \(x_i, \ldots, x_j\)

- Suppose \(x_n > 0\).
 - If \(j = n - 1\) then \(x_i, \ldots, x_n\) is the maximum-sum subsequence.
 - If \(j < n - 1\) there are two possibilities
 1) \(x_i, \ldots, x_j\) is still the maximum-sum subsequence
 2) A sequence \(x_k, \ldots, x_n\) is the maximum-sum subsequence

\[-3, \boxed{7, -2, 1}, -8, \boxed{6, -2, 4}\]
Stronger Ind Hypothesis: Given x_1, \ldots, x_{n-1} we can compute the maximum-sum subsequence, and the maximum-sum suffix subsequence.

Say x_i, \ldots, x_j is the maximum-sum and x_k, \ldots, x_{n-1} is the maximum-sum suffix subsequences.

- If $x_k + \cdots + x_{n-1} + x_n > x_i + \cdots + x_j$ then x_k, \ldots, x_n will be the new maximum-sum subsequence.
Are we done?
Updating Max Suffix Subsequence

Say x_6, \ldots, x_1 is the maximum-sum suffix subsequences of x_1, \ldots, x_{n-1}.

• If $x_k + \cdots + x_n \geq 0$ then,
 x_k, \ldots, x_n is the new maximum-sum suffix subsequence

• Otherwise,
 The new maximum-sum suffix is the empty string.
Maximum Sum Subsequence ALG

Initialize $S=0$ (Sum of numbers in Maximum Subseq)
Initialize $U=0$ (Sum of numbers in Maximum Suffix)
for $(i=1$ to $n)$ {
 if $(x[i] + U > S)$
 $S = x[i] + U$

 if $(x[i] + U > 0)$
 $U = x[i] + U$
 else
 $U = 0$
}
Output S.

-3 7 -2 1 -8 6 -2 4
Pf of Correct: Maximum Sum Subseq

Ind Hypo: Suppose
- \(x_i, \ldots, x_j\) is the max-sum-subseq of \(x_1, \ldots, x_{n-1}\)
- \(x_k, \ldots, x_{n-1}\) is the max-suffix-sum-sub of \(x_1, \ldots, x_{n-1}\)

Ind Step: Suppose \(x_a, \ldots, x_b\) is the max-sum-subseq of \(x_1, \ldots, x_n\)

Case 1 \((b < n)\): \(x_a, \ldots, x_b\) is also the max-sum-subseq of \(x_1, \ldots, x_{n-1}\)
So, \(a = i, b = j\) and the algorithm correctly outputs OPT

Case 2 \((b = n)\): We must have \(x_a, \ldots, x_{b-1}\) is the max-suff-sum of \(x_1, \ldots, x_{n-1}\).
If not, then
\[x_k + \cdots x_{n-1} > x_a + \cdots + x_{n-1}\]
So, \(x_k + \cdots + x_n > x_a + \cdots + x_b\) which is a contradiction.
Therefore, \(a = k\) and the algorithm correctly outputs OPT

Special Cases (You don’t need to mention if follows from above):
- The max-suffix-sum is empty string
- There are multiple maximum sum subsequences.
Pf of Correct: Max-Sum Suff Subseq

Ind Hypo: Suppose
- \(x_i, \ldots, x_j\) is the max-sum-subseq of \(x_1, \ldots, x_{n-1}\)
- \(x_k, \ldots, x_{n-1}\) is the max-suffix-sum-sub of \(x_1, \ldots, x_{n-1}\)

Ind Step: Suppose \(x_a, \ldots, x_n\) is the max-suffix-sum-subseq of \(x_1, \ldots, x_n\)
Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have \(x_k + \cdots + x_n < 0\). So the algorithm correctly finds max-suffix-sum subsequence.

Case 2 \((x_a, \ldots, x_n\ is nonempty)\): We must have \(x_a + \cdots + x_n \geq 0\).
Also, \(x_a, \ldots, x_{n-1}\) must be the max-suffix-sum of \(x_1, \ldots, x_{n-1}\). If not, \(x_a + \cdots + x_{n-1} < x_k + \cdots + x_{n-1}\) which implies \(x_a + \cdots + x_n < x_k + \cdots + x_n\) which is a contradiction.

Therefore, \(a = k\). So, the algorithm correctly finds max-suffix-sum subsequence.
Summary

• Try to reduce an instance of size n to smaller instances
 • Never solve a problem twice

• Before designing an algorithm study properties of optimum solution

• If ordinary induction fails, you may need to strengthen the induction hypothesis