CSE 421

Union Find DS
Dijkstra’s Algorithm,

Shayan Oveis Gharan
Properties of the OPT

Simplifying assumption: All edge costs c_e are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let e be the \textit{min} cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the \textit{max} cost edge belonging to C. Then no MST contains f.

red edge is in the MST
Green edge is not in the MST
Cut Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then T^* contains e.

Pf. By contradiction

Suppose $e = \{u,v\}$ does not belong to T^*. Adding e to T^* creates a cycle C in T^*. C crosses S even number of times \Rightarrow there exists another edge, say f, that leaves S.

$$T = T^* \cup \{e\} - \{f\}$$

is also a spanning tree. Since $c_e < c_f$, $c(T) < c(T^*)$.

This is a contradiction.
Cycle Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cycle property: Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (By contradiction)

Suppose f belongs to T^*.

Deleting f from T^* cuts T^* into two connected components. There exists another edge, say e, that is in the cycle and connects the components.

$$T = T^* \cup \{e\} - \{f\}$$ is also a spanning tree.

Since $c_e < c_f$, $c(T) < c(T^*)$.

This is a contradiction.
Kruskal’s Algorithm [1956]

Kruskal(G, c) {
 Sort edges weights so that \(c_1 \leq c_2 \leq \ldots \leq c_m \).
 \(T \leftarrow \emptyset \)

 foreach \((u \in V)\) make a set containing singleton \(\{u\}\)

 for \(i = 1\) to \(m\)
 Let \((u,v) = e_i\)
 if \((u\ and \ v\ are\ in\ different\ sets)\) {
 \(T \leftarrow T \cup \{e_i\} \)
 merge the sets containing \(u\) and \(v\)
 }
 return \(T\)
Kruskal’s Algorithm: Pf of Correctness

Consider edges in ascending order of weight.

Case 1: If adding e to T creates a cycle, discard e according to cycle property.

Case 2: Otherwise, insert $e = (u, v)$ into T according to cut property where $S =$ set of nodes in u's connected component.
Union Find Data Structure

Each set is represented as a tree of pointers, where every vertex is labeled with longest path ending at the vertex.

To check whether A, Q are in same connected component, follow pointers and check if root is the same.
Union Find Data Structure

Merge: To merge two connected components, make the root with the smaller label point to the root with the bigger label (adjusting labels if necessary). Runs in O(1) time

At most one label must be adjusted
Kruskal’s Algorithm with Union Find

Implementation. Use the **union-find** data structure.

- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```java
Kruskal(G, c) {
    Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
    $T \leftarrow \emptyset$

    foreach ($u \in V$) make a set containing singleton {$u$}

    for i = 1 to m  
        Let $(u,v) = e_i$
        if (u and v are in different sets) {
            $T \leftarrow T \cup \{e_i\}$
            merge the sets containing $u$ and $v$
        }
    
    return $T$
}
```

Find roots and compare

Merge at the roots
Claim: If the label of a root is k, there are at least 2^k elements in the set.
Therefore the depth of any tree in algorithm is at most $\log n$.

So, we can check if u, v are in the same component in time $O(\log n)$.
Depth vs Size: Correctness

Claim: If the label of a root is k, there are at least 2^k elements in the set.

Pf: By induction on k.
Base Case ($k = 0$): this is true. The set has size 1.
IH: Suppose the claim is true until some time t.
IS: If we merge roots with labels $k_1 > k_2$, the number of vertices only increases while the label stays the same.
If $k_1 = k_2$, the merged tree has label $k_1 + 1$, and by induction, it has at least $2^{k_1} + 2^{k_2} = 2^{k_1+1}$ elements.
Removing weight Distinction Assumption

Suppose edge weights are not distinct, and Kruskal’s algorithm sorts edges so

\[c_{e_1} \leq c_{e_2} \leq \cdots \leq c_{e_m} \]

Suppose Kruskal finds tree \(T \) of weight \(c(T) \), but the optimal solution \(T^* \) has cost \(c(T^*) < c(T) \).

Perturb each of the weights by a very small amount so that

\[c'_{e_1} < c'_{e_2} < \cdots < c'_{e_m} \]

where \(c'_{e_i} = c_{e_i} + i \cdot \epsilon \)

If \(\epsilon \) is small enough, \(c'(T^*) < c(T) \).

However, this contradicts the correctness of Kruskal’s algorithm, since the algorithm will still find \(T \), and Kruskal’s algorithm is correct if all weights are distinct.
Summary (Greedy Algorithms)

- **Greedy Stays Ahead**: Interval Scheduling, Dijkstra’s algorithm

- **Structural**: Interval Partitioning

- **Exchange Arguments**: MST, Kruskal’s Algorithm,

- **Data Structures**: Union Find, Heap
Divide and Conquer Approach
Divide and Conquer

Similar to algorithm design by induction, we reduce a problem to several subproblems. Typically, each sub-problem is at most a constant fraction of the size of the original problem.

Recursively solve each subproblem
Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm,
A Classical Example: Merge Sort

A

Split to n/2

sort recursively

merge
Why Balanced Partitioning?

An alternative "divide & conquer" algorithm:
• Split into n-1 and 1
• Sort each sub problem
• Merge them

Runtime

\[T(n) = T(n - 1) + T(1) + n \]

Solution:

\[
T(n) = n + T(n - 1) + T(1) \\
= n + n - 1 + T(n - 2) \\
= n + n - 1 + n - 2 + T(n - 3) \\
= n + n - 1 + n - 2 + \cdots + 1 = O(n^2)
\]
D&C: The Key Idea

Suppose we've already invented Bubble-Sort, and we know it takes n^2

Try **just one level** of divide & conquer:

- Bubble-Sort(first $n/2$ elements)
- Bubble-Sort(last $n/2$ elements)

Merge results

Time: $2T(n/2) + n = n^2/2 + n \ll n^2$

Almost twice as fast!
D&C approach

• “the more dividing and conquering, the better”
 • Two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing.
 • Best is usually full recursion down to a small constant size (balancing "work" vs "overhead").
 In the limit: you’ve just rediscovered mergesort!

• Even unbalanced partitioning is good, but less good
 • Bubble-sort improved with a 0.1/0.9 split:
 \[(.1n)^2 + (.9n)^2 + n = .82n^2 + n\]
 The 18% savings compounds significantly if you carry recursion to more levels, actually giving \(O(n \log n)\), but with a bigger constant.

• This is why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.
Finding the Root of a Function
Finding the Root of a Function

Given a continuous function \(f \) and two points \(a < b \) such that
\[
\begin{align*}
f(a) &\leq 0 \\
f(b) &\geq 0
\end{align*}
\]
Find an approximate root of \(f \) (a point \(c \) where there is \(r \) s.t., \(|r - c| \leq \epsilon \) and \(f(r) = 0 \)).

Note \(f \) has a root in \([a, b]\) by
intermediate value theorem

Note that roots of \(f \) may be irrational,
So, we want to approximate the root with an arbitrary precision!

\[
f(x) = \sin(x) - \frac{100}{\sqrt{x}} + x^4
\]
Suppose we want ϵ approximation to a root.

Divide $[a,b]$ into $n = \frac{b-a}{\epsilon}$ intervals. For each interval check $f(x) \leq 0, f(x + \epsilon) \geq 0$

This runs in time $O(n) = O\left(\frac{b-a}{\epsilon}\right)$

Can we do faster?
D&C Approach (Based on Binary Search)

Bisection\((a, b, \varepsilon)\)

if \((b - a) < \varepsilon\) then
 return \((a)\)
else
 \(m \leftarrow (a + b)/2\)
 if \(f(m) \leq 0\) then
 return\((\text{Bisection}(c, b, \varepsilon))\)
 else
 return\((\text{Bisection}(a, c, \varepsilon))\)
Time Analysis

Let \(n = \frac{a-b}{\epsilon} \)

And \(c = (a + b)/2 \)

Always half of the intervals lie to the left and half lie to the right of \(c \)

So,

\[
T(n) = T\left(\frac{n}{2}\right) + O(1)
\]

i.e., \(T(n) = O(\log n) = O(\log \frac{a-b}{\epsilon}) \)
Correctness Proof

\[P(k) = \text{"For any } a, b \text{ such that } k\varepsilon \leq |a - b| \leq (k + 1)\varepsilon \text{ if } f(a)f(b) \leq 0, \text{ then we find an } \varepsilon \text{ approx to a root using } \log k \text{ queries to } f" \]

Base Case: P(1): Output \(a + \varepsilon \)

IH: Assume P(k).

IS: Show P(2k). Consider an arbitrary \(a, b \) s.t.,

\[2k\varepsilon \leq |a - b| < (2k + 1)\varepsilon \]

If \(f(a + k\varepsilon) = 0 \) output \(a + k\varepsilon \).

If \(f(a)f(a + k\varepsilon) < 0 \), solve for interval \(a, a + k\varepsilon \) using \(\log(k) \) queries to f.

Otherwise, we must have \(f(b)f(a + k\varepsilon) < 0 \) since \(f(a)f(b) < 0 \) and \(f(a)f(a + k\varepsilon) \geq 0 \). Solve for interval \(a + k\varepsilon, b \).

Overall we use at most \(\log(k) + 1 = \log(2k) \) queries to f.