Greedy Alg: Minimum Spanning Tree

Shayan Oveis Gharan
An Advice on Problem Solving

If possible, try not to use arguments of the following type in proofs:

- The Best case is
- The worst case is

These arguments need rigorous justification, and they are usually the main reason that your proofs can become wrong, or unjustified.
A Structural Lower-Bound on OPT

Def. The *depth* of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.

Ex: Depth of schedule below = 3 \Rightarrow schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?
A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```plaintext
Sort intervals by starting time so that \( s_1 \leq s_2 \leq \ldots \leq s_n \).

\( d \leftarrow 0 \)

for \( j = 1 \) to \( n \) {
    if (lect \( j \) is compatible with some classroom \( k \), \( 1 \leq k \leq d \))
        schedule lecture \( j \) in classroom \( k \)
    else
        allocate a new classroom \( d + 1 \)
        schedule lecture \( j \) in classroom \( d + 1 \)
    \( d \leftarrow d + 1 \)
}
```

Implementation: Exercise!
Correctness

Observation: Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.

Pf (exploit structural property).

Let \(d \) = number of classrooms that the greedy algorithm allocates.
Classroom \(d \) is opened because we needed to schedule a job, say \(j \), that is incompatible with all \(d-1 \) previously used classrooms.
Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than \(s(j) \).
Thus, we have \(d \) lectures overlapping at time \(s(j) + \epsilon \), i.e. \(\text{depth} \geq d \)

“OPT Observation” \(\Rightarrow \) all schedules use \(\geq \text{depth} \) classrooms, so \(d = \text{depth} \) and greedy is optimal.
Minimum Spanning Tree Problem
Minimum Spanning Tree (MST)

Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$G = (V, E)$

$c(T) = \sum_{e \in T} c_e = 50$
Cuts

In a graph $G = (V, E)$ a cut is a **bipartition** of V into sets $S, V - S$ for some $S \subseteq V$. We show it by $(S, V - S)$

An edge $e = \{u, v\}$ is in the cut $(S, V - S)$ if exactly one of u, v is in S.

Obs: If G is connected then there is at least one edge in every cut.
Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even number of times.

Pf. (by picture)
Properties of the OPT

Simplifying assumption: All edge costs c_e are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

red edge is in the MST

Green edge is not in the MST
Cut Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then T^* contains e.

Pf. By contradiction

Suppose $e = \{u,v\}$ does not belong to T^*.

Adding e to T^* creates a cycle C in T^*.

C crosses S even number of times \Rightarrow there exists another edge, say f, that leaves S.

$T = T^* \cup \{e\} - \{f\}$ is also a spanning tree.

Since $c_e < c_f$, $c(T) < c(T^*)$.

This is a contradiction.
Cycle Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cycle property: Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (By contradiction)
Suppose f belongs to T^*.
Deleting f from T^* cuts T^* into two connected components. There exists another edge, say e, that is in the cycle and connects the components.

$$T = T^* \cup \{e\} - \{f\}$$

is also a spanning tree.
Since $c_e < c_f$, $c(T) < c(T^*)$.
This is a contradiction.
Kruskal’s Algorithm [1956]

Kruskal(G, c) {
 Sort edges weights so that \(c_1 \leq c_2 \leq \ldots \leq c_m \).
 \(T \leftarrow \emptyset \)

 foreach \((u \in V)\) make a set containing singleton \{u\}

 for \(i = 1\) to \(m\)
 Let \((u,v) = e_i\)
 if (u and v are in different sets) {
 \(T \leftarrow T \cup \{e_i\} \)
 merge the sets containing u and v
 }
 return \(T\)
}
Kruskal’s Algorithm: Pf of Correctness

Consider edges in ascending order of weight.

Case 1: If adding \(e \) to \(T \) creates a cycle, discard \(e \) according to cycle property.

Case 2: Otherwise, insert \(e = (u, v) \) into \(T \) according to cut property where \(S = \) set of nodes in \(u \)'s connected component.
Implementation: Kruskal’s Algorithm

Implementation. Use the **union-find** data structure.

- Build set T of edges in the MST.
- Maintain a set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```plaintext
Kruskal(G, c) {  
  Sort edges weights so that $c_1 \leq c_2 \leq ... \leq c_m$.  
  $T \leftarrow \emptyset$

  foreach $(u \in V)$ make a set containing singleton $\{u\}$

  for $i = 1$ to $m$
    Let $(u,v) = e_i$
    if (u and v are in different sets) {
      $T \leftarrow T \cup \{e_i\}$
      merge the sets containing $u$ and $v$
    }
  return $T$
}
```