| CSE421: Design and Analysis of Algorithms | May 5th, 2021                 |
|-------------------------------------------|-------------------------------|
| Homework 5                                |                               |
| Shayan Oveis Gharan                       | Due: May 13, 2021 at 23:59 PM |

P1) Suppose we have 2n points around a circle for some integer  $n \ge 1$ , where n of them are labelled with +1 and n of them are labelled with -1. Use induction to prove that you can pick one of the 2n points as your starting point, then move *counter-clockwise* around the circle such that at any point the number of +1 points you have passed through is at least the number of -1 points.

For example, in the following picture if you start at D you get the following values when you move counter clockwise. For example, at D you just have seen one +1 and no -1, at E you have seen one +1's and one -1, when you get to H you have seen two +1's and three -1's. So D is not a good starting point because you will get negative at H.

|     | D  | Е | F  | G | Η  |
|-----|----|---|----|---|----|
| Sum | +1 | 0 | +1 | 0 | -1 |



On the other hand, if you start at B, you will always have a non-negative sum at all points. So, B is the answer in this case.

| В  | С  | D  | Е  | F  | G  | Η  | Α |
|----|----|----|----|----|----|----|---|
| +1 | +2 | +3 | +2 | +3 | +2 | +1 | 0 |

- P2) Given a connected graph G = (V, E) with *n* vertices and *m* edges where every edge has a positive weight  $w_e > 0$ , for any pair of vertices u, v define d(u, v) to denote the length of the shortest path from *u* to *v* in *G*.
  - a) Prove that d(.,.) is a metric, namely it satisfies the following three properties: (i)  $d(u,v) \ge 0$ for all u, v and d(u, v) = 0 only when u = v. (ii) d(u, v) = d(v, u) for all vertices  $u, v \in V$ . (iii)  $d(u, v) + d(v, w) \ge d(u, w)$  for all  $u, v, w \in V$ .

b) Let  $d^* := \max_{u,v \in V} d(u,v)$  denote the longest shortest path in G. Design an  $O(m \log(n))$  time algorithm that gives a 2-approximation to  $d^*$ , i.e., your algorithm should output a number  $\tilde{d}^*$  such that

$$\tilde{d}^* \le d^* \le 2\tilde{d}^*.$$

- P3) In the Hamiltonian Path problem, you are given an unweighted undirected connected graph G = (V, E) with n vertices together with two vertices s, t and you need to output a path from s to t of length n 1, i.e., a path that starts at s goes to all vertices and ends at t, or output "Impossible" if no such path exists. Recall that the Hamiltonian path problem is NP-complete. Suppose a friend of yours is came up with an efficient algorithm to solve this problem. Unfortunately, their code does not output the Hamiltonian path; Instead, for any graph G and any pair of vertices s, t, if G has such a path from s to t it will output "yes" and "no" otherwise. Now, given a graph G with n vertices and s, t, design a polynomial time algorithm (that only runs their code polynomially many times) and outputs a Hamiltonian path from s to t in G if it exists, and outputs "Impossible" otherwise.
- P4) Draw the dynamic programming table of the following instance of the knapsack problem: You are given 6 items with weight 1, 2, 4, 6, 7, 9 and value 1, 3, 6, 11, 18, 24 respectively and the size of your knapsack is 13.
- P5) **Extra Credit:** A k-hypergraph is composed of a set V of vertices and a set of hyperedges where every hyperedge is a subset of V of size at least 2 and at most k, i.e., S is a hyperedge if  $S \subseteq V$  and  $2 \leq |S| \leq k$ . Note that 2-hypergraph is the same as a graph. Given a k-hypergraph G = (V, E) with n vertices where for some  $k \geq 2$  design a k-approximation algorithm for the vertex cover problem: Find the minimum set W of vertices of G such that every hyperedge  $S \in E$  has at least one vertex of W.