
CSE421: Design and Analysis of Algorithms May 5th, 2021

Homework 5

Shayan Oveis Gharan Due: May 13, 2021 at 23:59 PM

P1) Suppose we have 2n points around a circle for some integer n ≥ 1, where n of them are labelled
with +1 and n of them are labelled with −1. Use induction to prove that you can pick one of
the 2n points as your starting point, then move counter-clockwise around the circle such that
at any point the number of +1 points you have passed through is at least the number of -1
points.

For example, in the following picture if you start at D you get the following values when you
move counter clockwise. For example, at D you just have seen one +1 and no −1, at E you
have seen one +1’s and one −1, when you get to H you have seen two +1’s and three −1’s.
So D is not a good starting point because you will get negative at H.

D E F G H

Sum +1 0 +1 0 -1

A −1

B
+1C

+1

D
+1

E−1

F
+1 G

−1

H
−1

On the other hand,, if you start at B, you will always have a non-negative sum at all points.
So, B is the answer in this case.

B C D E F G H A

+1 +2 +3 +2 +3 +2 +1 0

P2) Given a connected graph G = (V,E) with n vertices and m edges where every edge has a
positive weight we > 0, for any pair of vertices u, v define d(u, v) to denote the length of the
shortest path from u to v in G.

a) Prove that d(., .) is a metric, namely it satisfies the following three properties: (i) d(u, v) ≥ 0
for all u, v and d(u, v) = 0 only when u = v. (ii) d(u, v) = d(v, u) for all vertices u, v ∈ V .
(iii) d(u, v) + d(v, w) ≥ d(u,w) for all u, v, w ∈ V .

5-1

b) Let d∗ := maxu,v∈V d(u, v) denote the longest shortest path in G. Design an O(m log(n))
time algorithm that gives a 2-approximation to d∗, i.e., your algorithm should output a
number d̃∗ such that

d̃∗ ≤ d∗ ≤ 2d̃∗.

P3) In the Hamiltonian Path problem, you are given an unweighted undirected connected graph
G = (V,E) with n vertices together with two vertices s, t and you need to output a path
from s to t of length n − 1, i.e., a path that starts at s goes to all vertices and ends at t,
or output “Impossible” if no such path exists. Recall that the Hamiltonian path problem is
NP-complete. Suppose a friend of yours is came up with an efficient algorithm to solve this
problem. Unfortunately, their code does not output the Hamiltonian path; Instead, for any
graph G and any pair of vertices s, t, if G has such a path from s to t it will output “yes”
and “no” otherwise. Now, given a graph G with n vertices and s, t, design a polynomial time
algorithm (that only runs their code polynomially many times) and outputs a Hamiltonian
path from s to t in G if it exists, and outputs “Impossible” otherwise.

P4) Draw the dynamic programming table of the following instance of the knapsack problem: You
are given 6 items with weight 1, 2, 4, 6, 7, 9 and value 1, 3, 6, 11, 18, 24 respectively and the size
of your knapsack is 13.

P5) Extra Credit: A k-hypergraph is composed of a set V of vertices and a set of hyperedges
where every hyperedge is a subset of V of size at least 2 and at most k, i.e., S is a hyperedge if
S ⊆ V and 2 ≤ |S| ≤ k. Note that 2-hypergraph is the same as a graph. Given a k-hypergraph
G = (V,E) with n vertices where for some k ≥ 2 design a k-approximation algorithm for the
vertex cover problem: Find the minimum set W of vertices of G such that every hyperedge
S ∈ E has at least one vertex of W .

5-2

