P1) Suppose we have $2n$ points around a circle for some integer $n \geq 1$, where n of them are labelled with $+1$ and n of them are labelled with -1. Use induction to prove that you can pick one of the $2n$ points as your starting point, then move counter-clockwise around the circle such that at any point the number of $+1$ points you have passed through is at least the number of -1 points.

For example, in the following picture if you start at D you get the following values when you move counter clockwise. For example, at D you just have seen one $+1$ and no -1, at E you have seen one $+1$’s and one -1, when you get to H you have seen two $+1$’s and three -1’s. So D is not a good starting point because you will get negative at H.

```
+1
D
+1
C
D
E
+1
F
G
H
A
-1
B
-1
```

On the other hand, if you start at B, you will always have a non-negative sum at all points. So, B is the answer in this case.

```
B C D E F G H A
+1 +2 +3 +2 +3 +2 +1 0
```

P2) Given a connected graph $G = (V, E)$ with n vertices and m edges where every edge has a positive weight $w_e > 0$, for any pair of vertices u, v define $d(u, v)$ to denote the length of the shortest path from u to v in G.

a) Prove that $d(., .)$ is a metric, namely it satisfies the following three properties: (i) $d(u, v) \geq 0$ for all u, v and $d(u, v) = 0$ only when $u = v$. (ii) $d(u, v) = d(v, u)$ for all vertices $u, v \in V$. (iii) $d(u, v) + d(v, w) \geq d(u, w)$ for all $u, v, w \in V$.

5-1
b) Let \(d^* := \max_{u,v \in V} d(u,v) \) denote the longest shortest path in \(G \). Design an \(O(m \log(n)) \)
time algorithm that gives a 2-approximation to \(d^* \), i.e., your algorithm should output a
number \(\tilde{d}^* \) such that
\[
\tilde{d}^* \leq d^* \leq 2\tilde{d}^*.
\]

P3) In the Hamiltonian Path problem, you are given an unweighted undirected connected graph
\(G = (V,E) \) with \(n \) vertices together with two vertices \(s,t \) and you need to output a path
from \(s \) to \(t \) of length \(n - 1 \), i.e., a path that starts at \(s \) goes to all vertices and ends at \(t \),
or output “Impossible” if no such path exists. Recall that the Hamiltonian path problem is
NP-complete. Suppose a friend of yours is came up with an efficient algorithm to solve this
problem. Unfortunately, their code does not output the Hamiltonian path; Instead, for any
graph \(G \) and any pair of vertices \(s,t \), if \(G \) has such a path from \(s \) to \(t \) it will output “yes”
and “no” otherwise. Now, given a graph \(G \) with \(n \) vertices and \(s,t \), design a polynomial time
algorithm (that only runs their code polynomially many times) and outputs a Hamiltonian
path from \(s \) to \(t \) in \(G \) if it exists, and outputs “Impossible” otherwise.

P4) Draw the dynamic programming table of the following instance of the knapsack problem: You
are given 6 items with weight 1, 2, 4, 6, 7, 9 and value 1, 3, 6, 11, 18, 24 respectively and the size
of your knapsack is 13.

P5) **Extra Credit:** A \(k \)-hypergraph is composed of a set \(V \) of vertices and a set of hyperedges
where every hyperedge is a subset of \(V \) of size at least 2 and at most \(k \), i.e., \(S \) is a hyperedge if
\(S \subseteq V \) and \(2 \leq |S| \leq k \). Note that 2-hypergraph is the same as a graph. Given a \(k \)-hypergraph
\(G = (V,E) \) with \(n \) vertices where for some \(k \geq 2 \) design a \(k \)-approximation algorithm for the
vertex cover problem: Find the minimum set \(W \) of vertices of \(G \) such that every hyperedge
\(S \in E \) has at least one vertex of \(W \).