P1) (20 points) In class we discussed an algorithm for interval schedule problem where we sorted
the jobs based on their finishing times and we greedily scheduled the largest possible set of
compatible jobs. Now, suppose that we sort the jobs based on their length in ascending order.
Construct an example where Greedy algorithm does not give the maximum number of jobs to
schedule. Justify your example by analyzing greedy and optimum on the example.

P2) (20 points) You are given a connected undirected weighted graph \(G = (V, E) \) with \(n \) vertices
and \(m \) edges, their weights, \(w_e \) for all edges \(e \in E \), a minimum spanning tree \(T \subseteq E \) together
with an edge \(f \in E \) and a new weight \(w'_f \) for \(f \), design an algorithm that runs in time \(O(n+m) \)
to test if \(T \) still remains the minimum spanning tree of the graph if we change the weight of
\(f \) to \(w'_f \). Your algorithm should output “yes” if \(T \) is still the MST and “no” otherwise. Note
that the edge \(f \) may or may not belong to \(T \) and we may decrease or increase weight of \(f \).
For simplicity, assume that all edge weights are distinct both before and after the update. For
example in the following picture the MST is colored in blue. If we update the weight of the
edge \((3, 1)\) to 1.5 the blue tree is no longer the MST.

P3) (10 points) Suppose you are choosing between the following three algorithms:

a) Algorithm A solves the problem by dividing it into six subproblems of one third the size,
recursively solves each subproblem, and then combines the solution in linear time.

b) Algorithm B solves the problem by dividing it into sixteen subproblems of one fourth the
size, recursively solves each subproblem, and then combines the solutions in quadratic time.

c) Algorithm C solves problems of size \(n \) by recursively solving three subproblems of size \(n-5 \),
and then combines the solution in constant time.

What are the running times of each of these algorithms? To receive full credit, it is enough to
write down the running time.

P4) (20 points) Given \(n \) distinct numbers \(a_1, \ldots, a_n \) we say a violation has occurred if a smaller
number comes after a larger number. Design an \(O(n \log n) \) time algorithm that outputs the
number of violations. For example, given the sequence 2, 5, 3, 1, 4 it has 5 violations because 3 comes after 5, 1 comes after 2, 5, 3 and 4 comes after 5.

If you design an algorithm that runs in $O(n \log^c n)$ for some arbitrary constant $c > 1$ you receive 18 points.

P5) **Extra Credit** The spanning tree game is a 2-player game. Each player in turn selects an edge. Player 1 starts by deleting an edge, and then player 2 fixes an edge (which has not been deleted yet); an edge fixed cannot be deleted later on by the other player. Player 2 wins if he succeeds in constructing a spanning tree of the graph; otherwise, player 1 wins.

The question is which graphs admit a winning strategy for player 1 (no matter what the other player does), and which admit a winning strategy for player 2.

Show that player 1 has a winning strategy if and only if G does not have two edge-disjoint spanning trees. Otherwise, player 2 has a winning strategy.