4 problems
1. Yes/No problem. No explanation is needed.
2, 3, 4 Algorithm design / proof.
 connect (it will be in the problem)
 if not said it may be disconnected.
60 min 15 minutes per problem
Rubric if your ALG/ide is correct 10
20 points
you get 7 right.
major 6 deducted -5, -6
minor deducted -1, -2.
Spend at least 10 min per problem
Read statement carefully.

Should you have questions? Send email to staff list
take exam 9:30 - 2:40 response

Sample Midterm:
1) a) \(n^{2.9} = O(n^{2.5}) \) False
 \(n^{3.1} \leq \Theta n^{2.5} \)
 b) There is a poly time ALG to decide whether a graph
 is bipartite \(\checkmark \)
 use BFS.
 c) an undirected connected graph has a unique
 heaviest edge \(e \), the \(e \) is not in any MST
 False
1) If all edge have weight 1, then there is $O(mn)$ to find MST.✓
 B/C any spanning is a MST.

2) Given a tree T with $2n$ vertices. Find a perfect matching poly-time ALG.

 $P(n)$ = Ask forget any tree with $2n$ nodes, ALG outputs
 a PM iff it exists.

 1. $P(1) = \bullet \bullet$ no edge then no PM
 ----- a PM exists
 IH: Assume $P(n-1)$.

 IS: Prove $P(n)$. Let G be an arbitrary acyclic graph.
 with $2n$ vertices. Evy connected comp of G is a tree.
 If G has a vertex v of $d(v)=0$ then output no PM.
 P.W. G has a leaf v (B/C evy tree comp has a leaf)
 Let u be neighbour of v.
Then in any PM matching of G, v is matched to u.

Match v to u, and $G' = G - u - v$. G' is cyclic if it has $2m - 1$ vertices.

By IH, we find a PM in G' iff it exists.

If G' has a PM, add (u, v) and we find a PM in G.

If G has a PM M, then $(u, v) \in M$, so $M - (u, v)$ is a PM of G' and my algorithm correctly outputs a PM.

3) $a_1 \leq a_n$

4) Given a sorted array $A \subseteq \{1, \ldots, n\}$

Is there i s.t. $A[i] = i$?

ALG: Find (l, r)

If $(l = r)$

Then check if $A[l] = l$ output l, else output ϕ.

$m = (l + r) / 2$

If $A[m] = m$
Given a seq \(a_l \), output an

\[P(k) = \text{Given a seq } a_l, a_r \text{ s.t. } r - l = k \]

my ALG finds a maximal element.

\[m = \frac{(l + r)}{2} \text{ mid point} \]

Base Case: \(P(1) \) just output single element.
IH: For some \(k \geq 1 \), Assume \(P(j) \), for all \(1 \leq j \leq k - 1 \).

IS: A proof \(P(k) \). Assume \(\exists (l, r) \) arbitrary is given s.t. \(nL = k \)
\[m = \frac{(l+r)}{2} \]

Case 1) \(a_{m-1} < a_m \geq a_{m+1} \) just output \(a_m \).

Case 2) \(a_{m-1} \geq a_m \). Since \(m - l < l \), By \(P(m-l) \) on \((l, m] \)
finds a local max. \(a_L \cdot a_m \geq a_J \)

For \(a_m \) being a local max in \(P(m-l) \) we just need \(a_m > a_{m-1} \) but for \(a_m \) to be a local max in \(P(k) \)
we need \(a_{m-1} < a_m > a_{m+1} \)

\(a_m < a_{m-1} \) so \(a_m \) is not a local max in \((l, m] \)
interval and \(P(m-l) \) does not return \(a_m \).
Any other number that \(P(m-l) \) returns is also
a local max of \(P(k) \).

Case 3) \(P(m, a_m < a_{m+1} \) simply return output
of \(P(m-r) \) on interval \((m, r) \).
Output is not \(a_m \) B/C by \(a_m < a_{m+1} \) \(a_m \) is not
a local max of \(P(m-r) \)
Any other local max is also a local max
of \(P(k) \).

Cut Prop S
If \(c_i \) not in \(\text{OPT} \)

\[c_i \rightarrow \text{OPT} \triangleleft \text{improve \ OPT} \]

in match