
CSE 421: Introduction
to Algorithms

Bipartiteness - DFS
Shayan Oveis Gharan

1

Bipartite Graphs
Definition: An undirected graph G=(V,E) is bipartite

if you can partition the node set into 2 parts (say, blue/red
or left/right) so that

all edges join nodes in different parts
i.e., no edge has both ends in the same part.

Application:
• Scheduling: machine=red, jobs=blue
• Stable Matching: men=blue, wom=red

2

a bipartite graph

Testing Bipartiteness
Problem: Given a graph G, is it bipartite?

3

v1

v2 v3

v6 v5 v4

v7

a bipartite graph G

Testing Bipartiteness
Problem: Given a graph G, is it bipartite?

Many graph problems become:
• Easier if the underlying graph is bipartite (matching)
• Tractable if the underlying graph is bipartite (independent set)
Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

4

v1

v2 v3

v6 v5 v4

v7

a bipartite graph G

v2

v4

v5

v7

v1

v3

v6

another drawing of G

An Obstruction to Bipartiteness
Lemma: If G is bipartite, then it does not contain an odd
length cycle.

Pf: We cannot 2-color an odd cycle, let alone G.

5

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

?

A Characterization of Bipartite Graphs
Lemma: Let G be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(ii) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

6
Case (ii)

L1 L2 L3

Case (i)

L1 L2 L3

A Characterization of Bipartite Graphs
Lemma: Let G be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(ii) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer.

By previous lemma, all edges join nodes on adjacent levels.

7
Case (i)

L1 L2 L3

Bipartition:
blue = nodes on odd levels,
red = nodes on even levels.

A Characterization of Bipartite Graphs
Lemma: Let G be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the
layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(ii) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (x, y) is an edge & x, y in same level 𝐿!.
Let z = their lowest common ancestor in BFS tree.
Let 𝐿" be level containing z.
Consider cycle that takes edge from x to y,
then tree from y to z, then tree from z to x.

Its length is 1 + (j-i) + (j-i), which is odd.
8

z = lca(x, y)

Obstruction to Bipartiteness
Cor: A graph G is bipartite iff it contains no odd length
cycles.

9

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,
then go as far you can

Naturally implemented using recursive calls or a stack

10

DFS(s) – Recursive version

Global Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v,x}
if (x is undiscovered)

Mark x discovered
DFS(x)

Mark v full-discovered

11

12

DFS(A)
A,1

B J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex
are sorted
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack
(Edge list):

A (B,J)

st[] =
{1}

13

DFS(A)
A,1

B,2 J

I

H

C

G

FD

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

st[] =
{1,2}

14

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =
{1,2,3}

15

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

st[] =
{1,2,3,4}

16

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

st[] =
{1,2,3,4,5}

17

DFS(A)
A,1

B,2 J

I

H

C,3

G

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

st[] =
{1,2,3,4,5,
6}

18

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)

st[] =
{1,2,3,4,5,
6,7}

19

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)

st[] =
{1,2,3,4,5,
6,7}

20

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

st[] =
{1,2,3,4,5,
6}

21

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

st[] =
{1,2,3,4,5}

22

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

st[] =
{1,2,3,4}

23

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =
{1,2,3}

24

DFS(A)
A,1

B,2 J

I

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =
{1,2,3,8}

25

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)

st[] =
{1,2,3,8,9}

26

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =
{1,2,3,8}

27

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =
{1,2,3,8,
10}

28

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] =
{1,2,3,8,10
,11}

29

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] =
{1,2,3,8,10
,11,12}

30

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
M(L)

st[] =
{1,2,3,8,10
,11,12,13}

31

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] =
{1,2,3,8,10
,11,12}

32

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] =
{1,2,3,8,10
,11}

33

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =
{1,2,3,8,
10}

34

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =
{1,2,3,8,
10}

35

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =
{1,2,3,8}

36

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =
{1,2,3}

37

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

st[] =
{1,2}

38

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

st[] =
{1,2}

39

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)

st[] =
{1}

40

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)

st[] =
{1}

41

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

TA-DA!!

st[] = {}

42

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge

43

DFS(A) A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
No Cross Edges!

Properties of (undirected) DFS
Like BFS(s):
• DFS(s) visits x iff there is a path in G from s to x

So, we can use DFS to find connected components
• Edges into then-undiscovered vertices define a tree –

the "depth first spanning tree" of G

Unlike the BFS tree:
• The DF spanning tree isn't minimum depth
• Its levels don't reflect min distance from the root
• Non-tree edges never join vertices on the same or

adjacent levels

44

Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its
descendants/ancestors in the DFS tree

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" – only
descendant/ancestor

45

Non-Tree Edges in DFS
Obs: During DFS(x) every vertex marked visited is a descendant
of x in the DFS tree

Lemma: For every edge {𝑥, 𝑦}, if {𝑥, 𝑦} is not in DFS tree, then
one of x or y is an ancestor of the other in the tree.

Proof:
One of x or y is visited first, suppose WLOG that x is visited first
and therefore DFS(x) was called before DFS(y)

Since {𝑥, 𝑦} is not in DFS tree, y was visited when the edge {x,y}
was examined during DFS(x)

Therefore y was visited during the call to DFS(x) so y is a
descendant of x.

46

DAGs and Topological Ordering

Precedence Constraints
In a directed graph, an edge (𝑖, 𝑗) means task 𝑖 must occur
before task 𝑗.

Applications
• Course prerequisite:

course 𝑖 must be taken before 𝑗
• Compilation:

must compile module 𝑖 before 𝑗
• Computing overflow:

output of job 𝑖 is part of input to job 𝑗
• Manufacturing or assembly:

sand it before paint it
48

Directed Acyclic Graphs (DAG)
A DAG is a directed acyclic graph, i.e.,
one that contains no directed cycles.

Def: A topological order of a directed graph G = (V, E) is an
ordering of its nodes as v1, v2, …, vn so that for every edge
(vi, vj) we have i < j.

49
a DAG

2 3

6 5 4

7 1
a topological ordering of that DAG–
all edges left-to-right

1 2 3 4 5 6 7

DAGs: A Sufficient Condition
Lemma: If G has a topological order, then G is a DAG.

Pf. (by contradiction)
Suppose that G has a topological order 1,2, … , 𝑛 and that G also
has a directed cycle C.
Let 𝑖 be the lowest-indexed node in C, and let 𝑗 be the node just
before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.
By our choice of 𝑖, we have 𝑖 < 𝑗.
On the other hand, since (𝑗, 𝑖) is an edge and 1,… , 𝑛 is a
topological order, we must have 𝑗 < 𝑖, a contradiction

50

1 i j n

the directed cycle C

the supposed topological order: 1,2,…,n

DAGs: A Sufficient Condition

51

G has a
topological order G is a DAG?

Every DAG has a source node
Lemma: If G is a DAG, then G has a node with no incoming edges (i.e.,
a source).

Pf. (by contradiction)
Suppose that G is a DAG and and it has no source
Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk
backward to x.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered between successive visits
to w. C is a cycle.

52

w x u v

C
w x u v

Is this similar to a
previous proof?

DAG => Topological Order
Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)
Base case: true if n = 1.

IH: Every DAG with n-1 vertices has a topological ordering.

IS: Given DAG with 𝑛 > 1 nodes, find a source node v.
𝐺 − { 𝑣 } is a DAG, since deleting v cannot create cycles.

By IH, 𝐺 − { 𝑣 } has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }

in topological order. This is valid since v has no incoming edges.

53

Reminder: Always remove
vertices/edges to use IH

A Characterization of DAGs

54

G has a
topological order G is a DAG

55

Topological Order Algorithm: Example

2 3

6 5 4

7 1

56

Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm: Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Topological Sorting Algorithm
Maintain the following:

count[w] = (remaining) number of incoming edges to node w
S = set of (remaining) nodes with no incoming edges

Initialization:
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S = S È {w} for all w with count[w]=0

Main loop:
while S not empty

• remove some v from S
• make v next in topo order O(1) per node
• for all edges from v to some w O(1) per edge

–decrement count[w]
–add w to S if count[w] hits 0

Correctness: clear, I hope
Time: O(m + n) (assuming edge-list representation of graph)

57

Summary
• Graphs: abstract relationships among pairs of objects

• Terminology: node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

• Representation: Adjacency list, adjacency matrix

• Nodes vs Edges: m = O(n2), often less

• BFS: Layers, queue, shortest paths, all edges go to same
or adjacent layer

• DFS: recursion/stack; all edges ancestor/descendant

• Algorithms: Connected Comp, bipartiteness, topological
sort 58

