Claim: Any non-tree connects node at the sam
or at two consecutive lood of BFS tree
$$H: Fix an edge (x,y)$$
. God: $[L(x)-L(y)] \leq 1$
Assume that x is discould first, also say $L(x)=k$.
Without lass of generality
Good: show $L(y) \leq k \geq 1$.
BC of query all vertices currently in $x = x$
is at is fy $L(v) \leq k = L(x)$
Gave 1: y discould before processing x $1 - \overline{x} \vee - \overline{x}$
(say by node v).
 $\Rightarrow k \leq L(y) = L(v) + l \leq k + 1$ V
 $\stackrel{r}{=} BC y$ discould ofter x.
Gase 2: y discould ofter x.
Gase 2: y discould when we process $x \Rightarrow L(y) = L(x) + 1$
 (x,y) will be a tree edge V
 D
Claim: For all vertices v, $L(v) = dwyth$ of shorkat
path from s to v.
 $H: L(w) \leq shorkest$ puth $L(v) > shorkest$ path V
In BFS tree 3 path of length $L(v) > shorkest$ path $\leq L(v)$
Now we $L(v) \leq shorkest$ path.
Sy Vo, $v_1, -$, v_k is the shorkest path $=$
 V

eg. suppose shorter path was
$$\forall S, V \Rightarrow (S,V)$$
 on edge $\Rightarrow [L(V_1) + L(V_1) \leq 1 \Rightarrow L(V_1) \leq L(V_1) + 1]$
 $P(V_1, V_2) = P(L(V_1) - L(V_1) \leq 1 \Rightarrow L(V_2) \leq L(V_1) + 1]$
 $(V_1, V_2) = P(L(V_1) - L(V_2) \leq 1 \Rightarrow L(V_2) \leq L(V_1) + 1]$
 $L(V_1) \leq 0, L(V_1) \leq 1, L(V_2) \leq 2 \dots$ $L(V_1 L \leq K)$
In Class Exercise: Given a graph G st. $d_{19}(V) \leq 1c$
for all V . Prove that we can color vertices of G with
 $L(V_1) \leq 0, L(V_1) \leq 1, L(V_2) \leq 2 \dots$ Think of IC as fixed.
P(n): Color vertices of G with n vertices using ICrol
colors : $f dy_1(V) \leq 1c$.
Baye Case $n=1$
If $p(n-1)$.
IS: Given arbitrary G with n vertices s,t .
 $dy_1(N) \leq k$ for all V .
Coools Color G with $K+1$ colors.
 $G' = G - V$ (V arbitrar)
 $=)$ ey vertex of G' has $dy_1 \leq 1c$.
To color G: all vertices
To color G: all vertices