
CSE 421: Introduction
to Algorithms

Induction - Graphs

Shayan Oveis Gharan

1

Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1
(So, every tree has a leaf)
Pf: (By contradiction)
Suppose every vertex has degree ≥ 2.
Start from a vertex 𝑣! and follow a path, 𝑣!, … , 𝑣" when we are at
𝑣" we choose the next vertex to be different from 𝑣"#!. We can
do so because deg 𝑣" ≥ 2.
The first time that we see a repeated vertex (𝑣$ = 𝑣") we get a
cycle.
We always get a repeated vertex because 𝐺 has finitely many
vertices

2

𝑣! 𝑣"𝑣#𝑣$ 𝑣%

Trees and Induction

Claim: Show that every tree with n vertices has n-1 edges.

Pf: By induction.
Base Case: n=1, the tree has no edge
IH: Suppose every tree with n-1 vertices has n-2 edges
IS: Let T be a tree with n vertices.
So, T has a vertex v of degree 1.
Remove v and the neighboring edge, and let T’ be the new
graph.
We claim T’ is a tree: It has no cycle, and it must be
connected.
So, T’ has n-2 edges and T has n-1 edges.

3

Induction

Induction in 311:
Prove 1 + 2 +⋯+ 𝑛 = 𝑛 𝑛 + 1 /2
Induction in 421:
Prove all trees with 𝑛 vertices have 𝑛 − 1 edges

4

1 2 43 5

#edges

Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 = |𝑉| vertices and 𝑚 = 𝐸
edges.

Claim: 0 ≤ 𝑚 ≤ !
" = ! !#$

"
= 𝑂(𝑛")

Pf: Since every edge connects two distinct vertices (i.e., G
has no loops)
and no two edges connect the same pair of vertices (i.e., G
has no multi-edges)
It has at most !

" edges.

5

Sparse Graphs

A graph is called sparse if 𝑚 ≪ 𝑛" and it is called dense
otherwise.

Sparse graphs are very common in practice
• Friendships in social network
• Planar graphs
• Web braph

Q: Which is a better running time 𝑂(𝑛 +𝑚) vs 𝑂(𝑛")?
A: 𝑂(𝑛 +𝑚) = 𝑂(𝑛"), but 𝑂(𝑛 +𝑚) is usually much better.

6

Storing Graphs (Internally in ALG)

Vertex set 𝑉 = 𝑣$, … , 𝑣! .
Adjacency Matrix: A
• For all, 𝑖, 𝑗, 𝐴 𝑖, 𝑗 = 1 iff 𝑣%, 𝑣& ∈ 𝐸
• Storage: 𝑛" bits

Advantage:
• 𝑂(1) test for presence or absence of edges

Disadvantage:
• Inefficient for sparse graphs both in storage and edge-

access
7

1 2
4

3
1 2 3 4

1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 1 1 1 0

Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure

8

1 2
4

3

4

3

3

2

1

4

2 4

1 2

43

Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure

9

1 2
4

3

4

3

3

2

1

4

2 4

1 2

43

Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices
reachable from 𝑠.
• Breadth First Search (BFS): Order nodes in successive

layers based on distance from s
• Depth First Search (DFS): More natural approach for

exploring a maze; many efficient algs build on it.

Applications:
• Finding Connected components of a graph
• Testing Bipartiteness
• Finding Aritculation points

10

Breadth First Search (BFS)

Completely explore the vertices in order of their distance
from 𝑠.

Three states of vertices:
• Undiscovered
• Discovered
• Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices

11

BFS implementation
Global initialization: mark all vertices "undiscovered"

BFS(s)
mark s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u fully-explored

12

13

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
1

14

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
2 3

15

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
3 4

16

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
4 5 6 7

17

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
5 6 7 8 9

18

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
7 8 9 10

19

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
8 9 10 11

20

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:
9 10 11 12 13

21

BFS(1)

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:

BFS Analysis
Global initialization: mark all vertices "undiscovered"

BFS(s)
mark s discovered
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered)
mark x discovered
append x on queue

mark u fully-explored
If we use adjacency list: 𝑂 𝑛 + 𝑂(∑' deg(𝑣)) = 𝑂(𝑚 + 𝑛)

22

𝐝𝐞𝐠 𝒖 ≤ 𝑶(𝒏) times

O(n) times: Once from
every vertex if G is connected

Properties of BFS

• BFS(s) visits a vertex v if and only if there is a path from
s to v

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of G

• Level 𝑖 in the tree are exactly all vertices v s.t., the
shortest path (in G) from the root s to v is of length 𝑖

• All nontree edges join vertices on the same or adjacent
levels of the tree

23

24

BFS Application: Shortest Paths

1

2 3

10

5

4

9

12
8

13

6
7

11

BFS Tree gives shortest
paths from 1 to all vertices

0

1

2

3

4All edges connect same
or adjacent levels

25

BFS Application: Shortest Paths

1

2 3

10

54

9

12

8

13

6 7

11

BFS Tree gives shortest
paths from 1 to all vertices

0

1

2

3

4All edges connect same
or adjacent levels

Properties of BFS

Claim: All nontree edges join vertices on the same or
adjacent levels of the tree

Pf: Consider an edge {x,y}
Say x is first discovered and it is added to level 𝑖.
We show y will be at level 𝑖 or 𝑖 + 1

This is because when vertices incident to x are considered
in the loop, if y is still undiscovered, it will be discovered
and added to level 𝑖 + 1.

26

Properties of BFS
Lemma: All vertices at level 𝑖 of BFS(s) have shortest path
distance 𝑖 to s.

Claim: If 𝐿 𝑣 = 𝑖 then shortest path ≤ 𝑖
Pf: Because there is a path of length 𝑖 from 𝑠 to 𝑣 in the BFS tree

Claim: If shortest path = 𝑖 then 𝐿 𝑣 ≤ 𝑖
Pf: If shortest path = 𝑖, then say 𝑠 = 𝑣%, 𝑣!, … , 𝑣" = 𝑣 is the
shortest path to v.
By previous claim,

𝐿 𝑣! ≤ 𝐿 𝑣% + 1
𝐿 𝑣& ≤ 𝐿 𝑣! + 1

…
𝐿 𝑣" ≤ 𝐿 𝑣"#! + 1

So, 𝐿 𝑣" ≤ 𝑖.

This proves the lemma.
27

