CSE 421: Introduction to Algorithms

Induction - Graphs

Shayan Oveis Gharan
Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1 (So, every tree has a leaf)

Pf: (By contradiction)

Suppose every vertex has degree ≥ 2.

Start from a vertex v_1 and follow a path, v_1, \ldots, v_i when we are at v_i we choose the next vertex to be different from v_i. We can do so because $\text{deg}(v_i) \geq 2$.

The first time that we see a repeated vertex ($v_j = v_i$) we get a cycle.

We always get a repeated vertex because G has finitely many vertices.
Claim: Show that every tree with n vertices has $n-1$ edges.

Pf: By induction.

Base Case: $n=1$, the tree has no edge

IH: Suppose every tree with $n-1$ vertices has $n-2$ edges

IS: Let T be a tree with n vertices.

So, T has a vertex v of degree 1.

Remove v and the neighboring edge, and let T' be the new graph.

We claim T' is a tree: It has no cycle, and it must be connected.

So, T' has $n-2$ edges and T has $n-1$ edges.
Induction

Induction in 311:
Prove $1 + 2 + \cdots + n = n(n + 1)/2$

Induction in 421:
Prove all trees with n vertices have $n - 1$ edges
Let \(G = (V, E) \) be a graph with \(n = |V| \) vertices and \(m = |E| \) edges.

Claim: \(0 \leq m \leq \binom{n}{2} = \frac{n(n-1)}{2} = O(n^2) \)

Pf: Since every edge connects two distinct vertices (i.e., \(G \) has no loops) and no two edges connect the same pair of vertices (i.e., \(G \) has no multi-edges) it has at most \(\binom{n}{2} \) edges.
Sparse Graphs

A graph is called **sparse** if \(m \ll n^2 \) and it is called **dense** otherwise.

Sparse graphs are very common in practice
- Friendships in social network
- Planar graphs
- Web braph

Q: Which is a better running time \(O(n + m) \) vs \(O(n^2) \)?

A: \(O(n + m) = O(n^2) \), but \(O(n + m) \) is usually much better.
Storing Graphs (Internally in ALG)

Vertex set $V = \{v_1, ..., v_n\}$.

Adjacency Matrix: A

- For all, $i, j, A[i, j] = 1$ iff $(v_i, v_j) \in E$
- Storage: n^2 bits

Advantage:
- $O(1)$ test for presence or absence of edges

Disadvantage:
- Inefficient for sparse graphs both in storage and edge-access
Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure
Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
- Compact for sparse
- Easily see all edges

Disadvantage
- No O(1) edge test
- More complex data structure
Graph Traversal

Walk (via edges) from a fixed starting vertex s to all vertices reachable from s.

- Breadth First Search (BFS): Order nodes in successive layers based on distance from s
- Depth First Search (DFS): More natural approach for exploring a maze; many efficient algs build on it.

Applications:
- Finding Connected components of a graph
- Testing Bipartiteness
- Finding Aritculation points
Breadth First Search (BFS)

Completely *explore* the vertices in order of their distance from s.

Three states of vertices:
- Undiscovered
- Discovered
- Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices
BFS implementation

Global initialization: mark all vertices "undiscovered"

```plaintext
BFS(s)
    mark s "discovered"
    queue = { s }
    while queue not empty
        u = remove_first(queue)
        for each edge {u,x}
            if (x is undiscovered)
                mark x discovered
                append x on queue
        mark u fully-explored
```
BFS(1)

Queue: 1
BFS(1)

Queue: 2 3
BFS(1)

Queue: 3 4
BFS(1)

Queue: 4 5 6 7
BFS(1)

Queue: 5 6 7 8 9
BFS(1)
BFS(1)

Queue: 8 9 10 11
BFS(1)

Queue:
BFS Analysis

Global initialization: mark all vertices "undiscovered"

BFS(s)

mark s discovered

queue = { s }

while queue not empty

u = remove_first(queue)

for each edge {u,x}

if (x is undiscovered)

mark x discovered

append x on queue

mark u fully-explored

If we use adjacency list: \(O(n) + O(\sum_v \deg(v)) = O(m + n) \)
Properties of BFS

- **BFS(s)** visits a vertex v if and only if there is a path from s to v.

- Edges into then- undiscovered vertices define a tree – the “Breadth First spanning tree” of G.

- Level i in the tree are exactly all vertices v s.t., the shortest path (in G) from the root s to v is of length i.

- All nontree edges join vertices on the same or adjacent levels of the tree.
BFS Application: Shortest Paths

BFS Tree gives shortest paths from 1 to all vertices.

All edges connect same or adjacent levels.
BFS Application: Shortest Paths

BFS Tree gives shortest paths from 1 to all vertices

All edges connect same or adjacent levels
Properties of BFS

Claim: All nontree edges join vertices on the same or adjacent levels of the tree

Pf: Consider an edge \{x,y\}
Say x is first discovered and it is added to level \(i\).
We show y will be at level \(i\) or \(i + 1\)

This is because when vertices incident to x are considered in the loop, if y is still undiscovered, it will be discovered and added to level \(i + 1\).
Properties of BFS

Lemma: All vertices at level i of BFS(s) have shortest path distance i to s.

Claim: If $L(v) = i$ then shortest path $\leq i$
Pf: Because there is a path of length i from s to v in the BFS tree

Claim: If shortest path $= i$ then $L(v) \leq i$
Pf: If shortest path $= i$, then say $s = v_0, v_1, ..., v_i = v$ is the shortest path to v.
By previous claim,
\[
L(v_1) \leq L(v_0) + 1 \\
L(v_2) \leq L(v_1) + 1 \\
\vdots \\
L(v_i) \leq L(v_{i-1}) + 1
\]
So, $L(v_i) \leq i$.

This proves the lemma.