
CSE 421: Introduction
to Algorithms

Induction - Graphs

Shayan Oveis Gharan

1

O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t.,
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that
eventually always c1g(N) £ f(N) £ c2g(N)

2

Asymptotic Bounds for common fns

• Polynomials:
𝑎! + 𝑎"𝑛 +⋯+ 𝑎#𝑛# is 𝑂 𝑛#

• Logarithms:
log$ 𝑛 = 𝑂(log% 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛&)

• 𝑛 log 𝑛 = 𝑂 𝑛".!"

3

Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk)
• Polynomial-time is exactly the set of running times that

have this property

Typical running times are small degree polynomials,
mostly less than N3, at worst N6, not N100

4

Why it matters?

5

• #atoms in universe < 2!"#
• Life of the universe < 2$" seconds
• A CPU does < 2%# operations a second
If every atom is a CPU, a 2& time ALG cannot solve n=350 if we start at
Big-Bang.

not only get very big, but do so abruptly, which likely yields
erratic performance on small instances

Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the
differences among n and 2n and n2 are negligible.
Rather, simple theoretical tools may not easily capture
such differences, whereas exponentials are qualitatively
different from polynomials, so more amenable to theoretical
analysis.

• “My problem is in P” is a starting point for a more
detailed analysis

• “My problem is not in P” may suggest that you need to
shift to a more tractable variant

6

7

Graphs

Graphs

8

Undirected Graphs G=(V,E)

9

A

2
10

9

8

3

4

B
6

7

11
12

13

Disconnected graph

Isolated vertices

Multi edges

Self loop

Graphs don’t Live in Flat Land

Geometrical drawing is mentally convenient, but
mathematically irrelevant:

4 drawings of a single graph:

10

A

7 4

3
A

74

3

A

74

3

A

7 4

3

Directed Graphs

11

1

2
10

9

8

3

4

5
6

7

11
12

13
Multi edge

self loop

Terminology

• Degree of a vertex: # edges that touch that vertex

deg(6)=3

• Connected: Graph is connected if there is a path
between every two vertices

• Connected component: Maximal set of connected
vertices

12

3

4
5

6

7
2

10

1

Terminology (cont’d)

• Path: A sequence of distinct vertices
s.t. each vertex is connected
to the next vertex with an edge

• Cycle: Path of length > 2 that has
the same start and end

• Tree: A connected graph with no cycles

13

3

4

5
6

2
10

1

2 5

1

34 6

Degree Sum

Claim: In any undirected graph, the number of edges is
equal to ⁄1 2 ∑()*+), - deg(𝑣)

Pf: ∑()*+), - deg(𝑣) counts every edge of the graph exactly
twice; once from each end of the edge.

14

3

4
5

6

7
2

10

1

|E|=8

"
'()*(+ ,

deg 𝑣 = 2 + 2 + 1 + 1 + 3 + 2 + 3 + 2 = 16

Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree
vertices is even
Pf: In previous claim we showed sum of all vertex degrees
is even. So there must be even number of odd degree
vertices, because sum of odd number of odd numbers is
odd.

15

3

4
5

6

7
2

10

1

4 odd degree vertices
3, 4, 5, 6

Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1
(So, every tree has a leaf)
Pf: (By contradiction)
Suppose every vertex has degree ≥ 2.
Start from a vertex 𝑣! and follow a path, 𝑣!, … , 𝑣" when we are at
𝑣" we choose the next vertex to be different from 𝑣"#!. We can
do so because deg 𝑣" ≥ 2.
The first time that we see a repeated vertex (𝑣$ = 𝑣") we get a
cycle.
We always get a repeated vertex because 𝐺 has finitely many
vertices

16

𝑣- 𝑣$𝑣"𝑣! 𝑣%

Trees and Induction

Claim: Show that every tree with n vertices has n-1 edges.

Pf: By induction.
Base Case: n=1, the tree has no edge
IH: Suppose every tree with n-1 vertices has n-2 edges
IS: Let T be a tree with n vertices.
So, T has a vertex v of degree 1.
Remove v and the neighboring edge, and let T’ be the new
graph.
We claim T’ is a tree: It has no cycle, and it must be
connected.
So, T’ has n-2 edges and T has n-1 edges.

17

