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O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,        
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t., 
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that 
eventually always c1g(N) £ f(N) £ c2g(N)
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Asymptotic Bounds for common fns

• Polynomials:
𝑎! + 𝑎"𝑛 +⋯+ 𝑎#𝑛# is 𝑂 𝑛#

• Logarithms: 
log$ 𝑛 = 𝑂(log% 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛&)

• 𝑛 log 𝑛 = 𝑂 𝑛".!"
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Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some 
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then 

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk) 
• Polynomial-time is exactly the set of running times that 

have this property

Typical running times are small degree polynomials, 
mostly less than N3, at worst N6, not N100
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Why it matters?
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• #atoms in universe < 2!"#
• Life of the universe < 2$" seconds
• A CPU does < 2%# operations a second
If every atom is a CPU, a 2& time ALG cannot solve n=350 if we start at 
Big-Bang.

not only get very big, but do so abruptly, which likely yields 
erratic performance on small  instances



Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the 
differences among n and 2n and n2 are negligible.
Rather, simple theoretical tools may not easily capture 
such differences, whereas exponentials are qualitatively 
different from polynomials, so more amenable to theoretical 
analysis.

• “My problem is in P” is a starting point for a more 
detailed analysis

• “My problem is not in P” may suggest that you need to 
shift to a more tractable variant
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Graphs
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Undirected Graphs G=(V,E)
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Graphs don’t Live in Flat Land

Geometrical drawing is mentally convenient, but 
mathematically irrelevant: 

4 drawings of a single graph:
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Directed Graphs
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Terminology

• Degree of a vertex: # edges that touch that vertex

deg(6)=3

• Connected: Graph is connected if there is a path 
between every two vertices

• Connected component: Maximal set of connected 
vertices
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Terminology (cont’d)

• Path: A sequence of distinct vertices 
s.t. each vertex is connected 
to the next vertex with an edge

• Cycle: Path of length > 2 that has 
the same start and end

• Tree: A connected graph with no cycles
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Degree Sum

Claim: In any undirected graph, the number of edges is 
equal to ⁄1 2 ∑()*+), - deg(𝑣)

Pf: ∑()*+), - deg(𝑣) counts every edge of the graph exactly 
twice; once from each end of the edge.
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Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree 
vertices is even
Pf: In previous claim we showed sum of all vertex degrees 
is even. So there must be even number of odd degree 
vertices, because sum of odd number of odd numbers is 
odd.
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Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1
(So, every tree has a leaf)
Pf: (By contradiction)
Suppose every vertex has degree ≥ 2.
Start from a vertex 𝑣! and follow a path, 𝑣!, … , 𝑣" when we are at 
𝑣" we choose the next vertex to be different from 𝑣"#!. We can 
do so because deg 𝑣" ≥ 2.
The first time that we see a repeated vertex (𝑣$ = 𝑣") we get a 
cycle. 
We always get a repeated vertex because 𝐺 has finitely many 
vertices
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Trees and Induction

Claim: Show that every tree with n vertices has n-1 edges.

Pf: By induction.
Base Case: n=1, the tree has no edge
IH: Suppose every tree with n-1 vertices has n-2 edges
IS: Let T be a tree with n vertices.
So, T has a vertex v of degree 1.
Remove v and the neighboring edge, and let T’ be the new 
graph.
We claim T’ is a tree: It has no cycle, and it must be  
connected.
So, T’ has n-2 edges and T has n-1 edges.
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