Claim. If G has no cycle => it has a vertex of dy <1.
Pf: by contribution!
Supp all vertices of G have dy >2
Start with a vertex V.
Soy V2 is a regular
dy (V2)>2=> V2 has a neighbor
$$\frac{1}{V_2}V_3 = \frac{1}{V_2}V_3$$
 has a neighbor $\frac{1}{V_2}V_2$, it cannot be V_1 (get
deg (V3)>2=> V3 has a neighbor $\frac{1}{2}V_2$, it is vy.
du (V21>2=> V4 has a neis $\frac{1}{2}V_3$, cannot be V_1, V_2 (get) so
and so on.
But this multiple BC. G has finitely many vertice. so
at some point We get a cycle contradiction
 $\frac{1}{2}$
Ever true with n vertex has not cybre
Torstead of addig
delte