
CSE 421: Introduction
to Algorithms

Course Overview

Shayan Oveis Gharan

1

Administrativia Stuffs

HW1 is due Thursday April 09 at 11:59PM
Please submit to Canvas

Late Submission: Coordinate with me
How to submit?
• Submit a separate file for each problem
• Double check your submission before the deadline!!
• For hand written solutions, take a picture, turn it into pdf and submit

Guidelines:
• Always justify your answer
• You can collaborate, but you must write solutions on your own
• Your proofs should be clear, well-organized, and concise. Spell out

main idea.
• Sanity Check: Make sure you use assumptions of the problem

2

Man Optimality Summary

Man-optimality: In version of GS where men propose, each
man receives the best valid partner.

Q: Does man-optimality come at the expense of the
women?

3

𝑤 is a valid partner of 𝑚 if there exist some
stable matching where 𝑚 and 𝑤 are paired

Example

Here
Valid-partner(𝑤!) = 𝑚!, 𝑚"
Valid-partner(𝑤") = 𝑚!, 𝑚"
Valid-partner(𝑤#) = 𝑚# .

Man-optimal matching 𝑚!, 𝑤! , 𝑚", 𝑤" , {𝑚#, 𝑤#}

4

favorite least favorite favorite least favorite

𝑚# 𝑤! 𝑤"
𝑚" 𝑤#𝑤!
𝑚! 𝑤#𝑤"

1st 2nd 3rd

𝑤# 𝑚! 𝑚"

𝑤" 𝑚! 𝑚#

𝑤! 𝑚" 𝑚#

1st 2nd 3rd

𝑤!
𝑤"

𝑤#

𝑚"

𝑚!

𝑚#

Woman Pessimality

Woman-pessimal assignment: Each woman receives the
worst valid partner.

Claim. GS finds woman-pessimal stable matching S*.

Proof.
Suppose 𝑚,𝑤 matched in S*, but 𝑚 is not worst valid partner for 𝑤.
There exists stable matching S in which 𝑤 is paired with a man, say
𝑚′, whom she likes less than 𝑚.

Let 𝑤′ be 𝑚 partner in S.
𝑚 prefers 𝑤 to 𝑤′.
Thus, (𝑚,𝑤) is an unstable in S.

5

man-optimality of S*

Summary

• Stable matching problem: Given n men and n women,
and their preferences, find a stable matching if one
exists.

• Gale-Shapley algorithm guarantees to find a stable
matching for any problem instance.

• GS algorithm finds a stable matching in O(n2) time.

• GS algorithm finds man-optimal woman pessimal
matching

• Q: How many stable matching are there?

6

How many stable Matchings?

We already show every instance has at least 1 stable
matchings.

There are instances with about 𝑏$ stable matchings for
𝑏 > 2

[Karlin-O-Weber’17]: Every instance has at most 𝑐$ stable
matchings for some 𝑐 > 2

[Open Problem]:
Is there an “efficient” algorithm that chooses a uniformly
random stable matching of a given instance.

7

Extensions: Matching Residents to Hospitals

Men » hospitals, Women » med school residents.

• Variant 1: Some participants declare others as unacceptable.

• Variant 2: Unequal number of men and women.

• Variant 3: Limited polygamy.

Def: Matching S is unstable if there is hospital h and resident r s.t.
• h and r are acceptable to each other; and
• either r is unmatched, or r prefers h to her assigned hospital; and
• either h does not have all its places filled, or h prefers r to at least

one of its assigned residents.

8

e.g. A resident not
interested in Cleveland

e.g. A hospital wants to hire 3 residents

Lessons Learned

• Powerful ideas learned in course.
• Isolate underlying structure of problem.
• Look at the first occurrence of a bad event and get a

contradiction.

• Potentially deep social ramifications. [legal disclaimer]
• Historically, men propose to women. Why not vice versa?
• Men: propose early and often.
• Men: be more honest.
• Women: ask out the guys.
• Theory can be socially enriching and fun!

9

“The Match”:
Doctors and Medical Residences

• Each medical school graduate
submits a ranked list of hospital
where he wants to do a residency

• Each hospital submits a ranked
list of newly minted doctors

• A computer runs stable matching
algorithm (extended to handle polygamy)

• Until recently, it was hospital-optimal.
10

History
1900
• Idea of hospital having residents (then called “interns”)
1900-1940s
• Intense competition among hospitals

• Each hospital makes offers independently
• Process degenerates into a race; hospitals advancing date at

which they finalize binding contracts
1944
• Medical schools stop releasing info about students

before a fixed date
1945-1949
• Hospitals started putting time limits on offers

• Time limits down to 12 hours; lots of unhappy people

11

“The Match”

1950
• NICI run a centralized algorithm for a trial run
• The pairing was not stable, Oops!!

1952
• The algorithm was modified and adopted. It was called

the Match.
• The first matching produced in April 1952

12

Five Representative Problems

1. Interval Scheduling
2. Weighted Interval Scheduling
3. Bipartite Matching
4. Independent Set Problem
5. Competitive Facility Location

13

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum cardinality subset of jobs that can
be run on a single machine.

14
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum weight subset of jobs that can be
run on a single machine.

15
Time

0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Bipartite Matching

Input: Given a bipartite graph

Goal: Find the maximum cardinality matching

16

C

1

5

2

A

E

3

B

D 4

Independent Set

Input: A graph

Goal: Find the maximum independent set

17

Subset of nodes that no two joined by an edge

6

2

5

1

7

3
4

Competitive Facility Location

Input: Graph with weight on each node

Game: Two competing players alternate in selecting nodes. Not
allowed to select a node if any of its neighbors have been
selected.

Goal. Does player 2 have a strategy which guarantees a total
value of 𝑉 no matter what player 1 does?

18

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

Five Representative Problems

Variation of a theme: Independent set Problem

1. Interval Scheduling
𝑛 log 𝑛 greedy algorithm

2. Weighted Interval Scheduling
𝑛 log 𝑛 dynamic programming algorithm

3. Bipartite Matching
𝑛! maximum flow based algorithm

4. Independent Set Problem: NP-complete

5. Competitive Facility Location: PSPACE-complete
19

Main Objective: Design Efficient Algorithms
that finds optimum solutions in the Worst Case

20

Defining Efficiency

“Runs fast on typical real problem instances”

Pros:
• Sensible,
• Bottom-line oriented

Cons:
• Moving target (diff computers, programming languages)
• Highly subjective (how fast is “fast”? What is “typical”?)

21

Measuring Efficiency

Time » # of instructions executed in a simple programming
language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long

string,…) built in; write it/charge for it as above

22

Time Complexity

Problem: An algorithm can have different running time on
different inputs

Solution: The complexity of an algorithm associates a
number T(N), the “time” the algorithm takes on problem
size N.

Mathematically,
T is a function that maps positive integers giving

problem size to positive integers giving number of
steps

23

On which inputs of size N?

Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on
any input of size N

Average Case Complexity: avg # steps algorithm takes on
inputs of size N

Best Case Complexity: min # steps algorithm takes on any
input of size N

24

This Couse

Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications
e.g., space shuttle, nuclear reactors)

• Worst-case instances kick in when an algorithm is run as
a module many times
e.g., geometry or linear algebra library

• Useful when running competitions
e.g., airline prices

• Unlike average-case no debate about the right definition

25

26

Time Complexity on Worst Case Inputs

Problem size N

Ti
m

e

T(N)

𝑁 log+𝑁

2𝑁 log2𝑁

O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t.,
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that
eventually always c1g(N) £ f(N) £ c2g(N)

27

Asymptotic Bounds for common fns

• Polynomials:
𝑎% + 𝑎!𝑛 +⋯+ 𝑎&𝑛& is 𝑂 𝑛&

• Logarithms:
log' 𝑛 = 𝑂(log(𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛))

• 𝑛 log 𝑛 = 𝑂 𝑛!.%!

28

Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk)
• Polynomial-time is exactly the set of running times that

have this property

Typical running times are small degree polynomials,
mostly less than N3, at worst N6, not N100

29

Why it matters?

30

• #atoms in universe < 2"#$
• Life of the universe < 2%# seconds
• A CPU does < 2&$ operations a second
If every atom is a CPU, a 2' time ALG cannot solve n=350 if we start at
Big-Bang.

not only get very big, but do so abruptly, which likely yields erratic
performance on small instances

Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the
differences among n and 2n and n2 are negligible.
Rather, simple theoretical tools may not easily capture
such differences, whereas exponentials are qualitatively
different from polynomials, so more amenable to theoretical
analysis.

• “My problem is in P” is a starting point for a more
detailed analysis

• “My problem is not in P” may suggest that you need to
shift to a more tractable variant

31

