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Administrativia Stuffs

HW1 is due Thursday April 09 at 11:59PM
Please submit to Canvas

Late Submission: Coordinate with me
How to submit?
• Submit a separate file for each problem
• Double check your submission before the deadline!!
• For hand written solutions, take a picture, turn it into pdf and submit

Guidelines:
• Always justify your answer
• You can collaborate, but you must write solutions on your own
• Your proofs should be clear, well-organized, and concise. Spell out 

main idea.
• Sanity Check: Make sure you use assumptions of the problem
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Man Optimality Summary

Man-optimality: In version of GS where men propose, each 
man receives the best valid partner.

Q: Does man-optimality come at the expense of the 
women?
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𝑤 is a valid partner of 𝑚 if there exist some
stable matching where 𝑚 and 𝑤 are paired



Example

Here 
Valid-partner(𝑤!) = 𝑚!, 𝑚"
Valid-partner(𝑤") = 𝑚!, 𝑚"
Valid-partner(𝑤#) = 𝑚# .

Man-optimal matching 𝑚!, 𝑤! , 𝑚", 𝑤" , {𝑚#, 𝑤#}
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Woman Pessimality

Woman-pessimal assignment: Each woman receives the 
worst valid partner.

Claim. GS finds woman-pessimal stable matching S*.

Proof.
Suppose 𝑚,𝑤 matched in S*, but 𝑚 is not worst valid partner for 𝑤.   
There exists stable matching S in which 𝑤 is paired with a man, say     
𝑚′, whom she likes less than 𝑚.

Let 𝑤′ be 𝑚 partner in S.
𝑚 prefers 𝑤 to 𝑤′.
Thus, (𝑚,𝑤) is an unstable in S. 
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man-optimality of S*



Summary

• Stable matching problem: Given n men and n women, 
and their preferences, find a stable matching if one 
exists.

• Gale-Shapley algorithm guarantees to find a stable 
matching for any problem instance.

• GS algorithm finds a stable matching in O(n2) time.

• GS algorithm finds man-optimal woman pessimal
matching

• Q: How many stable matching are there?
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How many stable Matchings?

We already show every instance has at least 1 stable 
matchings.

There are instances with about 𝑏$ stable matchings for 
𝑏 > 2

[Karlin-O-Weber’17]: Every instance has at most 𝑐$ stable 
matchings for some 𝑐 > 2

[Open Problem]: 
Is there an “efficient” algorithm that chooses a uniformly 
random stable matching of a given instance.
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Extensions: Matching Residents to Hospitals

Men » hospitals, Women » med school residents.

• Variant 1: Some participants declare others as unacceptable.

• Variant 2: Unequal number of men and women.

• Variant 3: Limited polygamy.

Def: Matching S is unstable if there is hospital h and resident r s.t.
• h and r are acceptable to each other; and
• either r is unmatched, or r prefers h to her assigned hospital; and
• either h does not have all its places filled, or h prefers r to at least 

one of its assigned residents.
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e.g. A resident not
interested in Cleveland

e.g. A hospital wants to hire 3 residents



Lessons Learned

• Powerful ideas learned in course.
• Isolate underlying structure of problem.
• Look at the first occurrence of a bad event and get a 

contradiction.

• Potentially deep social ramifications.  [legal disclaimer]
• Historically, men propose to women. Why not vice versa?
• Men:  propose early and often. 
• Men:  be more honest. 
• Women:  ask out the guys. 
• Theory can be socially enriching and fun! 
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“The Match”: 
Doctors and Medical Residences

• Each medical school graduate 
submits a ranked list of hospital 
where he wants to do a residency

• Each hospital submits a ranked 
list of newly minted doctors

• A computer runs stable matching 
algorithm (extended to handle polygamy)

• Until recently, it was hospital-optimal.
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History
1900
• Idea of hospital having residents (then called “interns”)
1900-1940s
• Intense competition among hospitals

• Each hospital makes offers independently
• Process degenerates into a race; hospitals advancing date at 

which they finalize binding contracts
1944
• Medical schools stop releasing info about students 

before a fixed date
1945-1949
• Hospitals started putting time limits on offers

• Time limits down to 12 hours; lots of unhappy people
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“The Match”

1950
• NICI run a centralized algorithm for a trial run
• The pairing was not stable, Oops!!

1952
• The algorithm was modified and adopted. It was called 

the Match. 
• The first matching produced in April 1952

12



Five Representative Problems

1. Interval Scheduling
2. Weighted Interval Scheduling
3. Bipartite Matching
4. Independent Set Problem
5. Competitive Facility Location
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Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum cardinality subset of jobs that can 
be run on a single machine.
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Interval Scheduling

Input: Given a set of jobs with start/finish times

Goal: Find the maximum weight subset of jobs that can be 
run on a single machine.
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Bipartite Matching

Input: Given a bipartite graph

Goal: Find the maximum cardinality matching
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Independent Set

Input: A graph

Goal: Find the maximum independent set
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Competitive Facility Location

Input: Graph with weight on each node 

Game: Two competing players alternate in selecting nodes.  Not 
allowed to select a node if any of its neighbors have been 
selected.

Goal. Does player 2 have a strategy which guarantees a total 
value of 𝑉 no matter what player 1 does?
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Five Representative Problems

Variation of a theme: Independent set Problem

1. Interval Scheduling
𝑛 log 𝑛 greedy algorithm

2. Weighted Interval Scheduling
𝑛 log 𝑛 dynamic programming algorithm

3. Bipartite Matching
𝑛! maximum flow based algorithm

4. Independent Set Problem: NP-complete

5. Competitive Facility Location: PSPACE-complete
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Main Objective: Design Efficient Algorithms
that finds optimum solutions in the Worst Case
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Defining Efficiency

“Runs fast on typical real problem instances”

Pros:
• Sensible,
• Bottom-line oriented

Cons:
• Moving target (diff computers, programming languages)
• Highly subjective (how fast is “fast”? What is “typical”?)
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Measuring Efficiency

Time » # of instructions executed in a simple programming 
language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long 

string,…) built in; write it/charge for it as above
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Time Complexity

Problem: An algorithm can have different running time on 
different inputs

Solution: The complexity of an algorithm associates a 
number T(N), the “time” the algorithm takes on problem 
size N.

Mathematically,
T is a function that maps positive integers giving 

problem size to positive integers giving number of 
steps
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On which inputs of size N?



Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on 
any input of size N

Average Case Complexity: avg # steps algorithm takes on 
inputs of size N

Best Case Complexity: min # steps algorithm takes on any 
input of size N
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Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications 
e.g., space shuttle, nuclear reactors)

• Worst-case instances kick in when an algorithm is run as 
a module many times 
e.g., geometry or linear algebra library

• Useful when running competitions 
e.g., airline prices

• Unlike average-case no debate about the right definition
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Time Complexity on Worst Case Inputs
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O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,        
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t., 
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that 
eventually always c1g(N) £ f(N) £ c2g(N)
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Asymptotic Bounds for common fns

• Polynomials:
𝑎% + 𝑎!𝑛 +⋯+ 𝑎&𝑛& is 𝑂 𝑛&

• Logarithms: 
log' 𝑛 = 𝑂(log( 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛))

• 𝑛 log 𝑛 = 𝑂 𝑛!.%!
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Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some 
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then 

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk) 
• Polynomial-time is exactly the set of running times that 

have this property

Typical running times are small degree polynomials, 
mostly less than N3, at worst N6, not N100
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Why it matters?
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• #atoms in universe < 2"#$
• Life of the universe < 2%# seconds
• A CPU does < 2&$ operations a second
If every atom is a CPU, a 2' time ALG cannot solve n=350 if we start at 
Big-Bang.

not only get very big, but do so abruptly, which likely yields erratic 
performance on small  instances



Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the 
differences among n and 2n and n2 are negligible.
Rather, simple theoretical tools may not easily capture 
such differences, whereas exponentials are qualitatively 
different from polynomials, so more amenable to theoretical 
analysis.

• “My problem is in P” is a starting point for a more 
detailed analysis

• “My problem is not in P” may suggest that you need to 
shift to a more tractable variant
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