CSE 421

Polynomial Time Reductions

NP Completeness

Shayan Oveis Gharan
Reductions & NP-Completeness
Def $A \leq_{P} B$: if there is an algorithm for problem A using a ‘black box’ (subroutine) that solve problem B s.t.,
- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

So,

B is Polynomial time solvable \implies A is Polynomial time solvable

Conversely,

No efficient Algorithm for A \implies No efficient Algorithm for B

In words, B is as hard as A (it can be even harder)
In this lecture we see a restricted form of polynomial-time reduction often called Karp or many-to-one reduction

\(A \leq_{p}^{1} B \): if and only if there is an algorithm for A given a black box solving B that on input x

- Runs for polynomial time computing an input \(f(x) \) of B
- Makes one call to the black box for B for input \(f(x) \)
- Returns the answer that the black box gave

We say that the function \(f(.) \) is the reduction
Example 1: Indep Set \leq_p Clique

Indep Set: Given $G=(V,E)$ and an integer k, is there $S \subseteq V$ s.t. $|S| \geq k$ and no two vertices in S are joined by an edge?

Clique: Given a graph $G=(V,E)$ and an integer k, is there $S \subseteq V$, $|U| \geq k$ s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set \leq_p Clique

Pf: Given $G = (V, E)$ and instance of indep Set. Construct a new graph $G' = (V, E')$ where $\{u, v\} \in E'$ if and only if $\{u, v\} \notin E$.

![Diagram of Indep Set and Clique](image.png)

S is an independent set in G

\[\text{S is an Clique in G'}\]
Example 2: Vertex Cover \(\leq_p\) Indep Set

Vertex Cover: Given a graph \(G=(V,E)\) and an integer \(k\), is there a vertex cover of size at most \(k\)?

Claim: For any graph \(G = (V, E)\), \(S\) is an independent set iff \(V - S\) is a vertex cover.

Pf:

\(\Rightarrow\) Let \(S\) be a independent set of \(G\)
Then, \(S\) has at most one endpoint of every edge of \(G\)
So, \(V - S\) has at least one endpoint of every edge of \(G\)
So, \(V - S\) is a vertex cover.

\(\Leftarrow\) Suppose \(V - S\) is a vertex cover
Then, there is no edge between vertices of \(S\) (otherwise, \(V - S\) is not a vertex cover)
So, \(S\) is an independent set.
Example 3: Vertex Cover \leq_P Set Cover

Set Cover: Given a set U, collection of subsets S_1, \ldots, S_m of U and an integer k, is there a collection of k sets that contain all elements of U?

Claim: Vertex Cover \leq_P Set Cover

Pf:
Given $(G = (V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U = E$
- For each $v \in V$ we create a set S_v of all edges connected to v

This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer
Example 3: Vertex Cover \leq_p Set Cover

Claim: Vertex Cover \leq_p Set Cover

Pf: Given $(G = (V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U = E$
- For each $v \in V$ we create a set S_v of all edges connected to v

Vertex-Cover (G, k) is yes \Rightarrow Set-Cover $f(G, k)$ is yes

If a set $W \subseteq V$ covers all edges, just choose S_v for all $v \in W$, it covers all U.

Set-Cover $f(G, k)$ is yes \Rightarrow Vertex-Cover (G, k) is yes

If $(S_{v_1}, ..., S_{v_k})$ covers all U, the set $\{v_1, ..., v_k\}$ covers all edges of G.
Decision Problems

A decision problem is a computational problem where the answer is just yes/no.

Here, we study computational complexity of decision Problems.

Why?

• much simpler to deal with
• Decision version is not harder than Search version, so it is easier to lower bound Decision version
• Less important, usually, you can use decider multiple times to find an answer.
Polynomial Time

Define P (polynomial-time) to be the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

Do we well understand P?
• We can prove that a problem is in P by exhibiting a polynomial time algorithm
• It is in most cases very hard to prove a problem is not in P.
Beyond P?

We have seen many problems that seem hard

• Independent Set
• 3-coloring
• Min Vertex Cover
• 3-SAT

Given a 3-CNF \((x_1 \lor \overline{x_2} \lor x_9) \land (\overline{x_2} \lor x_3 \lor x_7) \land \ldots\) is there a satisfying assignment?

Common Property: If the answer is yes, there is a “short” proof (a.k.a., certificate), that allows you to verify (in polynomial-time) that the answer is yes.

• The proof may be hard to find
Certifier: Algorithm $C(x, t)$ is a **certifier** for problem A if for every string x, the answer is “yes” iff there exists a string t such that $C(x, t) = \text{yes}$.

Intuition: Certifier doesn't determine whether answer is “yes” on its own; rather, it checks a proposed proof that answer is “yes”.

NP: Decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.
Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?

Certificate: An assignment of truth values to the n boolean variables.

Verifier: Check that each clause has at least one true literal.

Ex: \((x_1 \vee \overline{x_3} \vee x_4) \land (x_2 \vee \overline{x_4} \vee x_3) \land (x_2 \vee \overline{x_1} \vee x_3)\)

Certificate: \(x_1 = T, x_2 = F, x_3 = T, x_4 = F\)

Conclusion: 3-SAT is in NP
Example: Hamil-Cycle is in NP

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.
Example: Min s,t-cut in in NP

MIN-CUT. Given a flow network, and a number k, does there exist a min-cut of capacity at most k?

Certificate. A min-cut T.

Certifier. Check that the capacity of the min-cut is at most T.

Conclusion. MIN-CUT is in NP.
P, NP, EXP

P. Decision problems for which there is a **poly-time algorithm**.

EXP. Decision problems for which there is an **exponential-time algorithm**.

NP. Decision problems for which there is a **poly-time certifier**.

Claim. \(P \subseteq NP. \)

Pf. Consider any problem \(X \) in \(P \).

 By definition, there exists a poly-time algorithm \(A(x) \) that solves \(X \).

 Certificate: \(t = \) empty string, certifier \(C(x, t) = A(x) \). ▪

Claim. \(NP \subseteq EXP. \)

Pf. Consider any problem \(X \) in \(NP \).

 By definition, there exists a poly-time certifier \(C(x, t) \) for \(X \).

 To solve input \(x \), run \(C(x, t) \) on all strings \(t \) with \(|t| \leq p(|x|) \)

 Return **yes**, if \(C(x, t) \) returns **yes** for any of these.
The main question: P vs NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
Is the decision problem as easy as the certification problem?
Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …
What do we know about NP?

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does $P=NP$?
 - one of the most important open questions in all of science.
 - Huge practical implications specially if answer is yes

- To show Hamil-cycle $\notin P$ we have to prove that there is no poly-time algorithm for it even using all mathematical theorem that will be discovered in future!
NP Completeness

Complexity Theorists Approach: We don’t know how to prove any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem $A \in NP$, we have $A \leq_p B$

NP-Completeness: A problem B is NP-complete iff B is NP-hard and $B \in NP$.

Motivations:
- If $P \neq NP$, then every NP-Complete problems is not in P. So, we shouldn’t try to design Polytime algorithms
- To show $P = NP$, it is enough to design a polynomial time algorithm for just one NP-complete problem.
Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all problems $A \in NP$, $A \leq_p 3$-SAT.

- So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like Independent set, Vertex Cover, …

Fact: If $A \leq_p B$ and $B \leq_p C$ then, $A \leq_p C$

Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT \leq_p Independent set, then Independent Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT \leq_p Independent Set \leq_p Vertex Cover \leq_p Set Cover