Claim: \(G \) has indup set size \(\geq k \) if \(G' \) has clique size \(\geq k \).

Pf. \(G \) has indup set size \(\geq k \) if \(G' \) has clique size \(\geq k \).

If \(S \) is a clique in \(G \), then \(G' \) has clique size \(\geq k \).

If \(S' \) is a clique in \(G' \), then \(G \) has indup set size \(\geq k \).

Vertex Cover \(\leq_b \) Indep set

Vertex Cover Given \(G, k \) does it have vertex cover \(S \), with
Claim: S is a vertex cover of G iff $V-S$ is an independent set of G.

Implies G has vertex cover \iff G has independent set $|S| \leq \frac{1}{2}n$

Proof of claim: S vertex cover $\implies V-S$ independent set.

By contradiction: if $e \in V-S$ then e is not covered by S so S is not a vertex cover.

$V-S$ independent set $\implies S$ vertex cover.

By contradiction: If S not a vertex cover \implies there is an edge not covered by S. So both endpoints are in $V-S$. So $V-S$ not independent set.

HW8-P1: min vertex cover is polytime in Bipartite graphs \implies max independent set is also polytime solvable in Bipartite graphs.

Set Cover: Given ground elements U, $S_1, S_2, \ldots, S_m \subseteq U$ and integer k, is there $\leq k$ sets to cover all U. Vertex Cover \leq_p Set Cover.
Claim: \(G \) has vertex cover \(1 \leq k \leq \text{deg} \) iff \(U, k, S_v, \overline{S_u} \) is yes there are \(k \) sets to cover \(U \).

Proof: \(G \) has vertex cover \(1 \leq k \leq \text{deg} \)
\[S \leq V \]
\[U, k, S_v, \overline{S_u} \text{ is yes} \]

1. Just include \(S_v \) for all \(v \in E \).
2. \(1 \leq k \Rightarrow \) at most \(k \) sets
3. \(S \) covers all edges, and \(S_v \) has edges adjacent to \(v \).

\(U, k, S_v, \overline{S_u} \text{ is yes} \Rightarrow G \) has vertex cover \(1 \leq k \leq \text{deg} \).

Support \(\{S_v, \overline{S_u}\} \) covers all of \(U \). Then \(v_i, v_k \) form a vertex cover of \(G \).