CSE 421

Image Segmentation,
Polynomial Time Reductions

Shayan Oveis Gharan

Image Segmentation

Given an image we want to separate foreground from background
« Central problem in image processing.
« Divide image into coherent regions.

Foreground / background segmentation

Label each pixel as foreground/background.

« V = set of pixels, E = pairs of neighboring pixels.

e qa; = 0is likelihood pixel i in foreground. ol ole

e b; = 0is likelihood pixel i in background. °

e p;; = 0 is separation penalty for labeling one of i
and j as foreground, and the other as background.

Goals.
Accuracy: if a; > b, in isolation, prefer to label i in foreground.

Smoothness: if many neighbors of i are labeled foreground, we should
be inclined to label i as foreground.

Find WA, B) that maximizes:
[Seyn Son

Foreground icA JjEB (Lj)EE
Background EAIEE

Image Seg: Min Cut Formulation

Difficulties:

« Maximization (as opposed to minimization)
* No source or sink

« Undirected graph

Step 1: Turn into Minimization

Maximizing z a;+ 2 bj — Z Pij

iEA jEB (i,))EE
i€A,jEB
Equivalent to minimizing + 2 a; + 2 bj — 2 a; — Z b + z D; j
iEV JEV iEA JEB (i,J)EE
i€A,jEB
Equivalent to minimizing _|_Z a + 2 b, + 2 Dis
JEB i€A (i,j)EE

i€A,jEB

Min cut Formulation (cont'd)

G'=(V', E').
Add s to correspond to foreground;
Add t to correspond to background O—prm—0
Use two anti-parallel edges | |
instead of undirected edge. Pij
(ﬁ Pij %
Pij _
—t—a
b ||

Min cut Formulation (cont'd)

Consider min cut (A, B) in G’. (A = foreground.)

cap(4,B) = Eaj +Zbi + Z Di j

JEB IEA (i,j)EE
IEA,JEB

Precisely the quantity we want to minimize.

Reductions & NP-Completeness

Computational Complexity

Goal: Classify problems according to the amount of
computational resources used by the best algorithms that
solve them

Here we focus on time complexity

Recall: worst-case running time of an algorithm
* max # steps algorithm takes on any input of size n

Computational Complexity and Reduction

In most cases, we cannot characterize the true hardness of
a computational problem

S0?
We only reduce the number of problems

Want to be able to make statements of the form

« “If we could solve problem B in polynomial time then we
can solve problem A in polynomial time”

* “Problem B is at least as hard as problem A”

Polynomial Time Reduction

Def A <; B: if there is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

» Algorithm uses only a polynomial number of steps
« Makes only a polynomial number of calls to a subroutine for B

B is Polynomial Ais Polynomial
[time solvable] ‘ [time solvable]
Conversely,
No efficient ‘ No efficient
{Algorithm for A] [Algorithm for B]

In words, B is as hard as A (it can be even harder)

So,

10

<;, Reductions

In this lecture we see a restricted form of polynomial-time
reduction often called Karp or many-to-one reduction

A s% B: if and only if there is an algorithm for A given a
black box solving B that on input x

* Runs for polynomial time computing an input f(x) of B

« Makes one call to the black box for B for input f(x)

* Returns the answer that the black box gave

We say that the function f(.) is the reduction

11

Example 1: Indep Set <,, Clique

Indep Set: Given G=(V,E) and an integer k, is there S € V s.t.
|S| = k an no two vertices in S are joined by an edge?

Clique: Given a graph G=(V,E) and an integer k, is there S C V/,
|U| > k s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set <, Clique

Pf. Given ¢ = (V, E) and instance of indep Set. Construct a new
graph ¢' = (V,E") where {u,v} € E' if and only if {u,v} ¢ E.

(D
) 5
® @

S is an independ S is an Clique
setin G ﬁ in G’

12

Example 2: Vertex Cover <, Indep Set

Vertex Cover: Given a graph G=(V,E) and an integer k, is there a
vertex cover of size at most k?

Claim: For any graph ¢ = (V,E), S is an independent set iff
V — S is a vertex cover

Pf:

=> Let S be a independent set of G

Then, S has at most one endpoint of every edge of G
So, V — S has at least one endpoint of every edge of G
So, V — S is a vertex cover.

<= Suppose VV — § is a vertex cover

Then, there is no edge between vertices of S (otherwise, V — S is
not a vertex cover)

So, S is an independent set.

13

Example 3: Vertex Cover <, Set Cover

Set Cover: Given a set U, collection of subsets §;, ..., S,,, of U and
an integer Kk, is there a collection of k sets that contain all
elements of U?

Claim: Vertex Cover <,, Set Cover

Pf:

Given (G = (V,E), k) of vertex cover we construct a set cover

input (G, k)

o UU=F

 Foreach v € V we create a set S, of all edges connected to v
This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer

14

Example 3: Vertex Cover <, Set Cover

Claim: Vertex Cover <,, Set Cover

Pf. Given (G = (V, E), k) of vertex cover we construct a set cover
input (G, k)

e U=E

 For each v € V we create a set S, of all edges connected to v

Vertex-Cover (G,k) is yes => Set-Cover f(G,k) is yes
If a set W € V covers all edges,, just choose S, forall v e W, it
covers all U.

Set-Cover f(G,k) is yes => Vertex-Cover (G,k) is yes

If (Sy,,...,Sy,,) covers all U, the set {v,, ..., v} covers all edges
of G.

15

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no

Here, we study computational complexity of decision Problems.

Why?
 much simpler to deal with

. Dec_ision version is not har_d_er than _Search version, so itis
easier to lower bound Decision version

« Less important, usually, you can use decider multiple times to
find an answer .

16

