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Image Segmentation

Given an image we want to separate foreground from background
• Central problem in image processing.
• Divide image into coherent regions.
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Foreground / background segmentation

Label each pixel as foreground/background.
• V = set of pixels, E = pairs of neighboring pixels.
• 𝑎! ≥ 0 is likelihood pixel i in foreground.
• 𝑏! ≥ 0 is likelihood pixel i in background.
• 𝑝!,# ≥ 0 is separation penalty for labeling one of i

and j as foreground, and the other as background.
Goals.
Accuracy:  if ai > bi in isolation, prefer to label i in foreground.
Smoothness: if many neighbors of i are labeled foreground, we should 
be inclined to label i as foreground.
Find partition (A, B) that maximizes:
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Image Seg: Min Cut Formulation

Difficulties:
• Maximization (as opposed to minimization)
• No source or sink
• Undirected graph
Step 1: Turn into Minimization 
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Equivalent to minimizing

Equivalent to minimizing
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Min cut Formulation (cont’d)

G' = (V', E').
Add s to correspond to foreground;
Add t to correspond to background
Use two anti-parallel edges

instead of undirected edge.
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Min cut Formulation (cont’d)

Consider min cut (A, B) in G’.  (A = foreground.)

Precisely the quantity we want to minimize.
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Reductions & NP-Completeness



Computational Complexity

Goal: Classify problems according to the amount of 
computational resources used by the best algorithms that 
solve them

Here we focus on time complexity

Recall:  worst-case running time of an algorithm 
• max # steps algorithm takes on any input of size n
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Computational Complexity and Reduction

In most cases, we cannot characterize the true hardness of 
a computational problem
So?

We only reduce the number of problems

Want to be able to make statements of the form
• “If we could solve problem B in polynomial  time then we 

can solve problem A in polynomial time”
• “Problem B is at least as hard as problem A”
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Polynomial Time Reduction

Def A £PB: if there is an algorithm for problem A using a 
‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps 
• Makes only a polynomial number of calls to a subroutine for B

So, 

Conversely,

In words, B is as hard as A (it can be even harder)
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≤!" Reductions

In this lecture we see a restricted form of polynomial-time 
reduction often called Karp or many-to-one reduction

𝐴 ≤!" 𝐵: if and only if there is an algorithm for A given a 
black box solving B that on input x
• Runs for polynomial time computing an input f(x) of B
• Makes one call to the black box for B for input f(x)
• Returns the answer that the black box gave

We say that the function f(.) is the reduction
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Indep Set: Given G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉 s.t.
𝑆 ≥ 𝑘 an no two vertices in S are joined by an edge?

Clique: Given a graph G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉, 
|U| ³ k s.t., every pair of vertices in S is joined by an edge?
Claim: Indep Set ≤! Clique
Pf: Given 𝐺 = (𝑉, 𝐸) and instance of indep Set. Construct a new 
graph 𝐺" = (𝑉, 𝐸") where 𝑢, 𝑣 ∈ 𝐸′ if and only if 𝑢, 𝑣 ∉ 𝐸.

Example 1: Indep Set ≤! Clique
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Example 2: Vertex Cover ≤! Indep Set

Vertex Cover: Given a graph G=(V,E) and an integer k, is there a 
vertex cover of size at most k?
Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff
𝑉 − 𝑆 is a vertex cover
Pf: 
=> Let S be a independent set of G
Then, 𝑆 has at most one endpoint of every edge of G
So, 𝑉 − 𝑆 has at least one endpoint of every edge of G
So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover
Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is 
not a vertex cover)
So, 𝑆 is an independent set.
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Example 3: Vertex Cover ≤! Set Cover

Set Cover: Given a set U, collection of subsets 𝑆#, … , 𝑆$ of U and 
an integer k, is there a collection of k sets that contain all 
elements of U?
Claim: Vertex Cover ≤! Set Cover
Pf: 
Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover 
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆% of all edges connected to 𝑣

This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer
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Example 3: Vertex Cover ≤! Set Cover

Claim: Vertex Cover ≤! Set Cover
Pf: Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover 
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆% of all edges connected to 𝑣

Vertex-Cover (G,k) is yes => Set-Cover f(G,k) is yes
If a set 𝑊 ⊆ 𝑉 covers all edges,, just choose 𝑆% for all 𝑣 ∈ 𝑊, it 

covers all 𝑈.

Set-Cover f(G,k) is yes => Vertex-Cover (G,k) is yes
If (𝑆%! , … , 𝑆%") covers all 𝑈, the set {𝑣#, … , 𝑣&} covers all edges 

of G.
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Decision Problems

A decision problem is a computational problem where the 
answer is just yes/no

Here, we study computational complexity of decision Problems.

Why?
• much simpler to deal with
• Decision version is not harder than Search version, so it is 

easier to lower bound Decision version
• Less important, usually, you can use decider multiple times to 

find an answer .  
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