Claim: $G = (X, Y)$ If $|N(S)| > 1$ for all $S \subseteq X$ then $|X| = |Y|$. G has a perfect matching.

Pf: (By contradiction) Suppose G has no perfect matching. We will find some $S \subseteq X$ s.t. $|N(S)| < |S|$.

$|X| > \max$ Matching $G = \max$ flow $= \min$ cut H

Let (A, B) be min s-t cut of H

$\text{SEA, } tEB, \: X_A = XNA, \: Y_A = YNA, \: \text{cap}(A, B) < |X|$.

Claim: No edge $X_A - Y_B$

any such edge has infit cap.

B/c cap (A, B) is finite, it does not exist.

$\text{cap} (A, B) = |X_B| + |Y_A|$

$|N(X_A)| < |Y_A| = \text{cap}(A, B) - X_B < |X| - |X_B| = |X_A|$

In HW8-P1, you will do similar arg.