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Network Flows



Residual Graph

Original edge:  e = (u, v)  Î E.
• Flow f(e), capacity c(e).

Residual edge.
• "Undo" flow sent.
• e = (u, v) and eR = (v, u).
• Residual capacity:

𝑐! 𝑒 = $
𝑐 𝑒 − 𝑓 𝑒 𝑖𝑓 𝑒 ∈ 𝐸
𝑓 𝑒 𝑖𝑓 𝑒" ∈ 𝐸

Residual graph:  Gf = (V, Ef ).
• Residual edges with positive residual capacity.
• 𝐸! = 𝑒 ∶ 𝑓 𝑒 < 𝑐 𝑒 ∪ {𝑒 ∶ 𝑓(𝑒") > 0}.
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Augmenting Path Algorithm

22

Augment(f, c, P) {
b ¬ bottleneck(P) 
foreach e Î P {

if (e Î E) f(e) ¬ f(e) + b
c(e) ¬ c(e) – b
c(eR) ¬ c(eR) + b

else f(eR) ¬ f(eR) – b
c(eR) ¬ c(eR) + b
c(e) ¬ c(e) - b

}
return f

}

Ford-Fulkerson(G, s, t, c) {
foreach e Î E  f(e) ¬ 0. Gf is residual graph
while (there exists augmenting path P) {

f ¬ Augment(f, c, P)
}

return f
}

Smallest capacity edge on P

Forward edge

Reverse edge



Max Flow Min Cut Theorem

Augmenting path theorem.  Flow f is a max flow iff there are no 
augmenting paths. 
Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the 
max s-t flow is equal to the value of the min s-t cut.
Proof strategy.  We prove both simultaneously by showing the TFAE:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i)  Þ (ii)  This was the corollary to weak duality lemma.

(ii)  Þ (iii)  We show contrapositive.
Let f be a flow. If there exists an augmenting path, then we can 
improve f by sending flow along that path.

23



Pf of Max Flow Min Cut Theorem

(iii) => (i)
No augmenting path for f => there is a cut (A,B): v(f)=cap(A,B)

• Let f be a flow with no augmenting paths.
• Let A be set of vertices reachable from s in residual graph.
• By definition of A, s Î A.
• By definition of f, t Ï A.

24

𝑣 𝑓 = 5
# $%& $' (

𝑓 𝑒 − 5
# )* &$ (

𝑓(𝑒)

= 5
# $%& $' (

𝑐 𝑒

= 𝑐𝑎𝑝(𝐴, 𝐵)



Running Time

Assumption.  All capacities are integers between 1 and C.

Invariant.  Every flow value 𝑓(𝑒) and every residual capacities 
𝑐𝑓 (𝑒) remains an integer throughout the algorithm.

Theorem.  The algorithm terminates in at most 
𝑣(𝑓∗) £ 𝑛𝐶 iterations, if 𝑓∗ is optimal flow.
Pf.  Each augmentation increase value by at least 1.   

Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem.  If all capacities are integers, then there 
exists a max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.  

25



Applications of Max Flow:
Bipartite Matching



Maximum Matching Problem

Given an undirected graph G = (V, E).
A set 𝑀 ⊆ 𝐸 is a matching if each node appears in at most one 
edge in M.
Goal: find a matching with largest cardinality.

27



Bipartite Matching Problem

Given an undirected bibpartite graph 𝐺 = (𝑋 ∪ 𝑌, 𝐸)
A set 𝑀 ⊆ 𝐸 is a matching if each node appears in at most one 
edge in M.
Goal: find a matching with largest cardinality.

28
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Bipartite Matching using Max Flow

Create digraph H as follows:
• Orient all edges from X to Y, and assign infinite (or unit) capacity.
• Add source s, and unit capacity edges from s to each node in L.
• Add sink t, and unit capacity edges from each node in R to t.
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Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H.
Pf.  £
Given max matching M of cardinality k.
Consider flow f that sends 1 unit along each of k edges of M.
f is a flow, and has cardinality k.   ▪
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Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H.
Pf. (of ≥) Let f be a max flow in H of value k.
Integrality theorem  Þ k is integral and we can assume f is 0-1.
Consider M = set of edges from X to Y with f(e) = 1.
• each node in X and Y participates in at most one edge in M
• |M| = k:  consider s-t cut (𝑠 ∪ 𝑋, 𝑡 ∪ 𝑌)
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Perfect Bipartite Matching



Perfect Bipartite Matching

Def.  A matching M Í E is perfect if each node appears in 
exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:
• Clearly we must have |X| = |Y|.
• What other conditions are necessary?
• What conditions are sufficient?

33



Perfect Bipartite Matching: N(S)

Def. Let S be a subset of nodes, 
and let N(S) be the set of nodes 
adjacent to nodes in S.

Observation.  If a bipartite graph G has a 
perfect matching, then |N(S)| ³ |S| for all subsets S ⊆ 𝑋.
Pf. Each 𝑣 ∈ 𝑆 has to be matched to a unique node in N(S).

34
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Marriage Theorem

Thm: [Frobenius 1917, Hall 1935]  Let 𝐺 = (𝑋 ∪ 𝑌, 𝐸) be a 
bipartite graph with |X| = |Y|. 
Then, G has a perfect matching iff 𝑁 𝑆 ≥ 𝑆 for all 
subsets 𝑆 ⊆ 𝑋.

Pf. Þ
This was the previous observation.
If |N(S)| < |S| for some S, then there is no perfect matching.

35



Marriage Theorem

Pf. ∃𝑆 ⊆ 𝑋 s.t., |𝑁 𝑆 | < |𝑆| ⇐ G does not a perfect matching
Formulate as a max-flow and let (𝐴, 𝐵) be the min s-t cut
G has no perfect matching => 𝑣 𝑓∗ < |𝑋|. So, 𝑐𝑎𝑝 𝐴, 𝐵 < |𝑋|
Define 𝑋" = 𝑋 ∩ 𝐴, 𝑋# = 𝑋 ∩ 𝐵, 𝑌" = 𝑌 ∩ 𝐴
Then, 𝑐𝑎𝑝 𝐴, 𝐵 = 𝑋# + |𝑌"|
Since min-cut does not use ∞ edges, 𝑁 𝑋" ⊆ 𝑌"
𝑁 𝑋" ≤ 𝑌" = 𝑐𝑎𝑝 𝐴, 𝐵 − 𝑋# = 𝑐𝑎𝑝 𝐴, 𝐵 − 𝑋 + 𝑋" < |𝑋"|
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Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?
Generic augmenting path:  O(m val(f*) ) = O(mn).
Capacity scaling:  O(m2 log C )  = O(m2).
Shortest augmenting path:  O(m n1/2).

Non-bipartite matching.
Structure of non-bipartite graphs is more complicated, but

well-understood.  [Tutte-Berge, Edmonds-Galai]
Blossom algorithm:  O(n4).   [Edmonds 1965]
Best known:  O(m n1/2).        [Micali-Vazirani 1980]
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Edge Disjoint Paths



Edge Disjoint Paths Problem

Given a digraph G = (V, E) and two nodes s and t, find the max 
number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in 
common.

Ex:  communication networks.
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Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf.   £
Suppose there are k edge-disjoint paths 𝑃$, … , 𝑃%.
Set f(e) = 1 if e participates in some path 𝑃& ;  else set f(e) = 0.
Since paths are edge-disjoint, f is a flow of value k.   ▪
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Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf.  ≥ Suppose max flow value is k
Integrality theorem  Þ there exists 0-1 flow f of value k.
Consider edge (s, u) with f(s, u) = 1.
• by conservation, there exists an edge (u, v) with f(u, v) = 1
• continue until reach t, always choosing a new edge
This produces k (not necessarily simple) edge-disjoint paths.   ▪
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