

Network Flows, Matching

Shayan Oveis Gharan

Network Flows

Residual Graph

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e : f(e^R) > 0\}.$

20

21

Augmenting Path Algorithm

```
Augment(f, c, P) {
    b ← bottleneck(P)  Smallest capacity edge on P
    foreach e ∈ P {
        if (e ∈ E) f(e) ← f(e) + b ←
            c(e) ← c(e) - b
            c(e<sup>R</sup>) ← c(e<sup>R</sup>) + b
        else        f(e<sup>R</sup>) ← f(e<sup>R</sup>) - b ←
            c(e<sup>R</sup>) ← c(e<sup>R</sup>) + b
            c(e) ← c(e) - b
        }
    return f
}
```

```
Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E f(e) ← 0. G<sub>f</sub> is residual graph
   while (there exists augmenting path P) {
      f ← Augment(f, c, P)
   }
   return f
}
```

Max Flow Min Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max s-t flow is equal to the value of the min s-t cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

- (i) There exists a cut (A, B) such that v(f) = cap(A, B).
- (ii) Flow f is a max flow.
- (iii) There is no augmenting path relative to f.
- (i) \Rightarrow (ii) This was the corollary to weak duality lemma.
- (ii) \Rightarrow (iii) We show contrapositive.

Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along that path.

Pf of Max Flow Min Cut Theorem

(iii) => (i)

No augmenting path for $f \Rightarrow$ there is a cut (A,B): v(f)=cap(A,B)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$
$$= \sum_{e \text{ out of } A} c(e)$$
$$= cap(A, B)$$

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \le nC$ iterations, if f^* is optimal flow.

Pf. Each augmentation increase value by at least 1.

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer. Pf. Since algorithm terminates, theorem follows from invariant.

Applications of Max Flow: Bipartite Matching

Maximum Matching Problem

Given an undirected graph G = (V, E).

A set $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Goal: find a matching with largest cardinality.

Bipartite Matching Problem

Given an undirected bibpartite graph $G = (X \cup Y, E)$ A set $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Goal: find a matching with largest cardinality.

Bipartite Matching using Max Flow

Create digraph H as follows:

- Orient all edges from X to Y, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H. Pf. \leq

Given max matching M of cardinality k.

Consider flow f that sends 1 unit along each of k edges of M.

f is a flow, and has cardinality k.

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H. Pf. (of \geq) Let f be a max flow in H of value k. Integrality theorem \Rightarrow k is integral and we can assume f is 0-1. Consider M = set of edges from X to Y with f(e) = 1.

- each node in X and Y participates in at most one edge in M
- $|\mathsf{M}| = \mathsf{k}$: consider s-t cut $(s \cup X, t \cup Y)$

Perfect Bipartite Matching

Perfect Bipartite Matching

Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:

- Clearly we must have |X| = |Y|.
- What other conditions are necessary?
- What conditions are sufficient?

Perfect Bipartite Matching: N(S)

S

Def. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph G has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq X$. Pf. Each $v \in S$ has to be matched to a unique node in N(S).

N(S)

Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let $G = (X \cup Y, E)$ be a bipartite graph with |X| = |Y|.

Then, G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq X$.

Pf. \Rightarrow

This was the previous observation.

If |N(S)| < |S| for some S, then there is no perfect matching.

Marriage Theorem

Pf. $\exists S \subseteq X$ s.t., $|N(S)| < |S| \leftarrow G$ does not a perfect matching Formulate as a max-flow and let (A, B) be the min s-t cut G has no perfect matching => $v(f^*) < |X|$. So, cap(A, B) < |X|Define $X_A = X \cap A, X_B = X \cap B, Y_A = Y \cap A$ Then, $cap(A, B) = |X_B| + |Y_A|$ Since min-cut does not use ∞ edges, $N(X_A) \subseteq Y_A$ $|N(X_A)| \le |Y_A| = cap(A, B) - |X_B| = cap(A, B) - |X| + |X_A| < |X_A|$ Y_B X_B ∞ Y_A X_A

Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching? Generic augmenting path: $O(m val(f^*)) = O(mn)$. Capacity scaling: $O(m^2 \log C) = O(m^2)$. Shortest augmenting path: $O(m n^{1/2})$.

Non-bipartite matching.

Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
Blossom algorithm: O(n⁴). [Edmonds 1965]
Best known: O(m n^{1/2}). [Micali-Vazirani 1980]

Edge Disjoint Paths

Edge Disjoint Paths Problem

Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value. Pf. \leq

Suppose there are k edge-disjoint paths $P_1, ..., P_k$. Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0. Since paths are edge-disjoint, f is a flow of value k.

Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value. Pf. \geq Suppose max flow value is k Integrality theorem \Rightarrow there exists 0-1 flow f of value k. Consider edge (s, u) with f(s, u) = 1.

- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a new edge

This produces k (not necessarily simple) edge-disjoint paths.