
CSE 421

Bellman-Ford ALG, Network Flows

Shayan Oveis Gharan

1

Shortest Paths with Negative Edge
Weights

Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex
𝑠, where the weight of edge (u,v) is 𝑐!,#
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative

3

s

1

3

4

2

2

3 -2

-1

source s

1

3

4

2

2

3 -2

-1

Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

4

s

1

3

4

2

2

3 -2

-1

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.
Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.
• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.
• Let 𝑠, 𝑣$, 𝑣%, … , 𝑣&'$, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.
• Then, 𝑠, 𝑣$, … , 𝑣&'$ must be the shortest 𝑠 - 𝑣&'$ path with at

most 𝑖 − 1 edges. So,
𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣&'$, 𝑖 − 1 + 𝑐#!"#,#

5

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = 4
0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

!: !,#)* +,-+
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐!,#)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

6

Bellman Ford Algorithm

7

for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?

Bellman Ford Algorithm

8

for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?
Yes, run for i=1…2n and see if the M[v,n-1] is different from M[v,2n]

DP Techniques Summary

Recipe:
• Follow the natural induction proof.
• Find out additional assumptions/variables/subproblems that you

need to do the induction
• Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.
• Whenever a problem is a special case of an NP-hard problem an

ordering is important:
• Adding a new variable: knapsack.
• Dynamic programming over intervals: RNA secondary structure.
Top-down vs. bottom-up:
• Different people have different intuitions
• Bottom-up is useful to optimize the memory

9

Network Flows

Soviet Rail Network

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Network Flow Applications

Max flow and min cut.
• Two very rich algorithmic problems.
• Cornerstone problems in combinatorial optimization.
• Beautiful mathematical duality.

Nontrivial applications / reductions.
• Data mining.
• Open-pit mining.
• Project selection.
• Airline scheduling.
• Bipartite matching.
• Baseball elimination.
• Image segmentation.
• Network connectivity.

12

Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two
distinguished nodes: s = source, t = sink.
Suppose each directed edge e has a nonnegative capacity 𝑐(𝑒)
Goal: Find a cut separating 𝑠, 𝑡 that cuts the minimum capacity of
edges.

13

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

s-t cuts

Def. An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B): 𝑐𝑎𝑝 𝐴, 𝐵 = ∑2 345 36 7 𝑐(𝑒)

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 10 + 5 + 15 = 30

A

s-t cuts

Def. An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B): 𝑐𝑎𝑝 𝐴, 𝐵 = ∑ !,# :!∈7,#∈9 𝑐(𝑢, 𝑣)

15

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 9 + 15 + 8 + 30
= 62

A

Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two
distinguished nodes: s = source, t = sink.
Suppose each directed edge e has a nonnegative capacity 𝑐(𝑒)
Goal: Find a s-t cut of minimum capacity

16

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 10 + 8 + 10 = 28

s-t Flows

Def. An s-t flow is a function that satisfies:
• For each 𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)
• For each 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: ∑! "# $% & 𝑓(𝑒) = ∑! %'$ %(& 𝑓(𝑒) (conservation)

Def. The value of a flow f is: 𝑣 𝑓 = ∑2 345 36 : 𝑓(𝑒)

17

4

0

0

0 4

0
0

Value = 4
capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

0

0
0

0

4

0

0

s-t Flows

Def. An s-t flow is a function that satisfies:
• For each 𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)
• For each 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: ∑! "# $% & 𝑓(𝑒) = ∑! %'$ %(& 𝑓(𝑒) (conservation)

Def. The value of a flow f is: 𝑣 𝑓 = ∑2 345 36 : 𝑓(𝑒)

18

10

6

6

3 8

0
0

Value = 24
capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

11

1
0

10

8

0

11

Maximum s-t Flow Problem

Goal: Find a s-t flow of largest value.

19

10

9

9

4 8

1
0

Value = 28
capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

0

14

4
0

10

9

0

14

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

8
! %'$ %()

𝑓 𝑒 − 8
! "# $%)

𝑓 𝑒 = 𝑣(𝑓)

20

10

6

6

3 8

0
0

Value = 24
capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

11

1
0

10

8

0

11

Pf of Flow value Lemma

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

8
! %'$ %()

𝑓 𝑒 − 8
! "# $%)

𝑓 𝑒 = 𝑣(𝑓)

Pf.

21

𝑣 𝑓 = 8
! %'$ %(*

𝑓(𝑒)

= 8
&∈)

8
! %'$ %(&

𝑓 𝑒 − 8
! "# $% &

𝑓(𝑒)

= 8
! %'$ %()

𝑓 𝑒 − 8
! "# $%)

𝑓(𝑒)

By conservation of flow,
all terms except v=s are0

All contributions due to
internal edges cancel out

Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then the value of the flow is at most the capacity of the cut.

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

22

10

6

6

3 8

0
0

v(f)=24, capacity=9+15+8+30=62

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

11

1
0

10

8

0

11

Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then the value of the flow is at most the capacity of the cut.

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)
Pf.

23

𝑣 𝑓 = 8
! ,-. ,/)

𝑓 𝑒 − 8
! 01 .,)

𝑓(𝑒)

≤ 8
! ,-. ,/)

𝑓(𝑒)

≤ 8
! ,-. ,/)

𝑐 𝑒 = 𝑐𝑎𝑝(𝐴, 𝐵)

s

t

A B

7
6

8
4

6
5

Certificate of Optimality

Corollary: Suppose there is a s-t cut (A,B) such that
𝑣 𝑓 = 𝑐𝑎𝑝 𝐴, 𝐵

Then, f is a maximum flow and (A,B) is a minimum cut.

24

10

9

9

4 8

1
0

v(f)=28, cap(A,B)=28

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

0

14

4
0

10

9

0

14

A Greedy Algorithm for Max Flow

• Start with f(e) = 0 for all edge e Î E.
• Find an s-t path P where each edge has f(e) < c(e).
• Augment flow along path P.
• Repeat until you get stuck.

25

s

1

2

t

10

10

0 0

0 0

0

20

20

30

20

20

20

A Greedy Algorithm for Max Flow

• Start with f(e) = 0 for all edge e Î E.
• Find an s-t path P where each edge has f(e) < c(e).
• Augment flow along path P.
• Repeat until you get stuck.

26Greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

OPT = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

Local Optimum ≠ Global Optimum

