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Shortest Paths with Negative Edge 
Weights



Shortest Paths with Neg Edge Weights

Given a weighted directed graph 𝐺 = 𝑉, 𝐸 and a source vertex 
𝑠, where the weight of edge (u,v) is 𝑐!,#
Goal: Find the shortest path from s to all vertices of G.

Recall that Dikjstra’s Algorithm fails when weights are negative
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Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the 
cycle again and again. 

So, suppose G does not have a negative cycle. 
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 
most 𝑖 edges.
Let us characterize 𝑂𝑃𝑇(𝑣, 𝑖).

Case 1: 𝑂𝑃𝑇(𝑣, 𝑖) path has less than 𝑖 edges.
• Then, 𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣, 𝑖 − 1 .

Case 2: 𝑂𝑃𝑇(𝑣, 𝑖) path has exactly 𝑖 edges.
• Let 𝑠, 𝑣$, 𝑣%, … , 𝑣&'$, 𝑣 be the 𝑂𝑃𝑇(𝑣, 𝑖) path with 𝑖 edges.
• Then, 𝑠, 𝑣$, … , 𝑣&'$ must be the shortest 𝑠 - 𝑣&'$ path with at 

most 𝑖 − 1 edges. So, 
𝑂𝑃𝑇 𝑣, 𝑖 = 𝑂𝑃𝑇 𝑣&'$, 𝑖 − 1 + 𝑐#!"#,#
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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = 4
0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

!: !,# )* +,-+
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐!,#)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer. 
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Bellman Ford Algorithm
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for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 



Bellman Ford Algorithm
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for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 
Yes, run for i=1…2n and see if the M[v,n-1] is different from M[v,2n] 



DP Techniques Summary

Recipe: 
• Follow the natural induction proof. 
• Find out additional assumptions/variables/subproblems that you 

need to do the induction
• Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.
• Whenever a problem is a special case of an NP-hard problem an 

ordering is important: 
• Adding a new variable:  knapsack.
• Dynamic programming over intervals:  RNA secondary structure.
Top-down vs. bottom-up:  
• Different people have different intuitions 
• Bottom-up is useful to optimize the memory
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Network Flows



Soviet Rail Network

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Network Flow Applications

Max flow and min cut.
• Two very rich algorithmic problems.
• Cornerstone problems in combinatorial optimization.
• Beautiful mathematical duality.

Nontrivial applications / reductions.
• Data mining.
• Open-pit mining. 
• Project selection.
• Airline scheduling.
• Bipartite matching.
• Baseball elimination.
• Image segmentation.
• Network connectivity.
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Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two 
distinguished nodes:  s = source, t = sink.
Suppose each directed edge e has a nonnegative capacity 𝑐(𝑒)
Goal: Find a cut separating 𝑠, 𝑡 that cuts the minimum capacity of 
edges.
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s-t cuts

Def.  An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B): 𝑐𝑎𝑝 𝐴, 𝐵 = ∑2 345 36 7 𝑐(𝑒)
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s-t cuts

Def.  An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B): 𝑐𝑎𝑝 𝐴, 𝐵 = ∑ !,# :!∈7,#∈9 𝑐(𝑢, 𝑣)
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Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two 
distinguished nodes:  s = source, t = sink.
Suppose each directed edge e has a nonnegative capacity 𝑐(𝑒)
Goal: Find a s-t cut of minimum capacity
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s-t Flows

Def.  An s-t flow is a function that satisfies:
• For each 𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)
• For each 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: ∑! "# $% & 𝑓(𝑒) = ∑! %'$ %( & 𝑓(𝑒) (conservation)

Def.  The value of a flow f is: 𝑣 𝑓 = ∑2 345 36 : 𝑓(𝑒)
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s-t Flows

Def.  An s-t flow is a function that satisfies:
• For each 𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)
• For each 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: ∑! "# $% & 𝑓(𝑒) = ∑! %'$ %( & 𝑓(𝑒) (conservation)

Def.  The value of a flow f is: 𝑣 𝑓 = ∑2 345 36 : 𝑓(𝑒)
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Maximum s-t Flow Problem

Goal: Find a s-t flow of largest value.
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

8
! %'$ %( )

𝑓 𝑒 − 8
! "# $% )

𝑓 𝑒 = 𝑣(𝑓)
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Pf of Flow value Lemma

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

8
! %'$ %( )

𝑓 𝑒 − 8
! "# $% )

𝑓 𝑒 = 𝑣(𝑓)

Pf. 
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𝑣 𝑓 = 8
! %'$ %( *

𝑓(𝑒)

= 8
&∈)

8
! %'$ %( &

𝑓 𝑒 − 8
! "# $% &

𝑓(𝑒)

= 8
! %'$ %( )

𝑓 𝑒 − 8
! "# $% )

𝑓(𝑒)

By conservation of flow,
all terms except v=s are0

All contributions due to 
internal edges cancel out



Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t 
cut.  Then the value of the flow is at most the capacity of the cut.

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)
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Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut.  
Then the value of the flow is at most the capacity of the cut.

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)
Pf. 
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Certificate of Optimality

Corollary: Suppose there is a s-t cut (A,B) such that 
𝑣 𝑓 = 𝑐𝑎𝑝 𝐴, 𝐵

Then, f is a maximum flow and (A,B) is a minimum cut.
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A Greedy Algorithm for Max Flow

• Start with f(e) = 0 for all edge e Î E.
• Find an s-t path P where each edge has f(e) < c(e).
• Augment flow along path P.
• Repeat until you get stuck.
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A Greedy Algorithm for Max Flow

• Start with f(e) = 0 for all edge e Î E.
• Find an s-t path P where each edge has f(e) < c(e).
• Augment flow along path P.
• Repeat until you get stuck.
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